
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE DESIGN AND IMPLEMENTATION

OF THE MEMORY MNAGER FOR A

SECURE ARCHIVAL STORAGE SYSTEM

by

Edmund E. Moore i/

Alan V. Gary

June 1980

Thesis Advisor: L. A. Cox, Jr.

Cl Approved for public release: distribution unlimited

LU.

4"I , .

SECURITY CL AS(;,IC&TICK OF T41S PAG9 (01vom D..c #m d.

FPORT DOCUMEWTATION PAGE eXpnC CMP'rTuN-rFo.w

Ia. GOVT ACtSlIONNO: RCCIPICNTS CATALOG UMBEI

4 TiL (and Subtioe) a. TYPE OPr REPORT & PVNI O COVINCO

The Design and Implementation Master's Thesis:
of the Memory Manager for a June. 1980

Secure Archival Storage System 1- PIRORMING CAG. 6OPOT Mum,

?. AuV',O0f.) .. CONTRACT O G0RANT MNUMOR)

Alan V. Gary
Edmund E. Moore

9. PERFORMING ORGANIZATION NAME AND ADDRECSS t- PROGRAM ELEMN. 11 RO CT, TASKAAi& A WORm UNiT NU: UER

Naval Postgraduate
School

Monterey, California 93940
It CONTROLLING CIFFICK MAbj.r AND ADONIS$ i3. REPORT CATS

Naval Postgraduate School June 1980

Monterey,California 93940 165

IS MONITORING AGENCY NAM hu ADD E2i:l drOlevent free Contretitug4 O11140) IS. SECURITY CLASS. 7071.0 *.,et)s

Naval Postgraduate School Unclassified

Monterey, California 93940 *. O C,,*,,ON(OOWNhG

to. OISTRIOUTION STAT MI.NT (of 100o RoIs-eeI

Approved for public release: distribution unlimited

14SQPOLEIONTAMY O$

to KE9Y WORDS lCon.Unue on fovueoo stdo it ftecooforynd IdeeIfty by bleat oenbeci

Memory Manager, Security Kernel, Operating System Security,

Distributed Process, Segmentation, Process Switching, File System,

Non-Distributed Process, Protection Domain, Aliasing

40 MTACY (Cont.gs 0n terwoo Side It 0066..wrF OWe tdPROOFr 6? 61*09 smnba.)

This thesis presents a detailed design and implementation of a
memory manager for a kernel technology based secure archival
storage system (SASS). The memory manager is a pait of the non-
distributed portion of the Security Kernel, and is solely
responsible for the proper management of both the main memory
(random access) and the secondary storage (direct access) of the
sy.tem. The memory manager is designed for implementation on the.,

D oM7 1473 EDIIoN o ,,, I oNs O,,.LT
(P a g e 1) s / h0.io IO S GS

SEiIy We

-CUMIV CLagSgVIC*YION 00 0e1 O4 I nII I0"0I

ZILOG Z8000 microprocessor in a multi-processor environment. The
loop free design structure, based upon levels of abstraction, and
a segment aliasing scheme for information confinement are
essential elements of the overall system security provided by the
SASS.

Acc13.sro For

pg; ,c "":3 I]

* ; 7 1

DD FortD 1473 2S14 Id0I2.014, -6601 sgCua,,v € 5ItPMCATIO ' oil TH P&oGtt"" oate Un ,,'

4L

Approved for public release; distribution unlimited.

The Design and Implementation
of the Memory Manager for a

Secure Archival Storage System

by

Edmund 7. ,oore
lieutenant Commander, United States Navy
B.S., United States Naval Academy, 197e

Alan V. Gar,.
Lieutenant, United States Navy

B.A., University of Louisville, 1974

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 19E0

Authors Z -------

Approved by:

'hs s A-!v i sr

.. cond e..de.

-- ---------------------- --,~ ---art-------e-------

Dean of Info mati and. Policy Sciences

[3

L,

ABSTRACT

This thesis presents a detailed design and

implementation of a merory manager for a kernel technolory

based secvre archival storage system (SASS). The memory

manager is part of the non-distributed .ortion of the

Security Kernel, and is solely responsible for the proper

ranarement of both the main memory (random access) and the

secondary storap'e (direct access) of the system. The memory

manager is designed for implementation on the ZILOG Z0O

microprocEssor in a multi-processor environment. The loop

free design structure, based upon levels of abstractic':, and

a segnent aliasinp schemne for information confinement are

essential elements of the overall system security provided

by the SASS.

MY

)! .

[I.

4' • m • • m

TABLE OF CONTENTS

I . I N T R O D IU C T I O N I

A. BACKGROUND 12

B. TASIC CONCEPTS/rEFINITIONS 14

1. Process 14

2. Process Switchin 15

[3. Protection Domains............. 16

4. Sep.mentation6 .

5. Information Security

i C. T*FSIS STRUCTURE..923} II. SECURE ARCHIVAL STORAGE STSTEP DESIGN 25

A BASIC OV ERV IEW 25

* ~~~B. 11U?YPVISOF.o ...~*~ *....... . 3

4i 1. File Manapement Process.. 32

2. Input/Output Process3F

C. DISTRIBJTED
J1 ,. l o a t e K e e p e r3

2. Segment Manager....... 9 o-*

3. ven t Mana&,er 45
4. Traffic Controller.......................4..7

f4 5. Inner Traffic Controller........ . 0,645,

r.NON-DISTR IBUTED 'KERNEFL.. 2

III. MEMORY MANAGER PROCESS rETAILED DFSIGN-4

J A. INTROD-UCTIONoo...o ..54

B. DESIGN PARAMETERS AND DECISIONS

5

F

C. DoTABASS 6

2. Global Active Segment Table............... 6e

2. Local Active Segment Table 65

3. Alias Table............................... 65

4. Memory Management 'Jrit Image.............. 68

5. Memory Allocation/Deallocation lit Maps...71

D. BASIC FUNCTIONS .. voestseet .71

1. Create an Alias Entry 74

2. Delete an Alias Entry.....................77

4 3. Activate a Segment **qq***..79

4:.. Deactivate a Segment 63

5. Swap a Segment In................

6. Swap a Seement Out

7. feactivate All Segments 91
A)

S. Move a Segment to %Global ?erory...........94

9. Move a Serment to Local Memory 96

le. Update the MMU Image 96

IV .. ST UKF ARY.......99

IV STATUS OF R"SACV

LI

.A. CON LUS IONS £

E . FOLLOW, Oil WOEK.. **0*00 000 6 0o e

APPENDIX A--PLZ/cTS SOURCE LISTINGS 104

APPENDIX]?--PLZ/ .SM LISTINGS. 3E

-,' P EN IX C--S"WAP iN PLZ/ASm COrE 1521

iITOF'EERNE

fit

LIST OF FIGURES

1. SASS System 2

2. SASS Abstract System Overview30

3. Virtual File Fierarchy

4. File Manager Known Segment Table e6

5. Security Kernel resip'n

6. Known Sezment Table 3

7. Active Process Table...............................

A. Virtu . l Processor Table. 51

9. SASS Fardware System Overview ,.

le. Global Active Sepment Table

I1. Alias Table Creation 64
12. Local Active Seprrent Table ,.66

13. Alias Table.. 67

14. Memory Managem.ent Unit a

15. Memory Allocation/reallocation Map 72

16. Mnemory Manager Mainline Code....................... 75

17. Create-Entry Pseudo-Code 76

le. Belete Entry Pseudo-CodeS

19. Activate Pseudo-Code 2

20. Deativate Pseudo-Code E6

21. SwapIn Pseudo-Code9 29

22. SwapOut Pseudo-Code 92

23. reactivate All Pseudo-Code 1

7." eoo.i.•i ,., .q

24. move ToiGlobal Pseudo-Code 95

25. Move To local Pseudo-Code 97

26. Update Pseudo-Code. 9

27. Success Codes M

hiq

,4

A CKNoWLErGFHE NTS

SThls research is sponsored in part by the Office of

Naval Research Project Number NR 337-e5, monitored by Mr.

IJoel Trimble.

The support and assistance of Lt.Col Roper Schell,

Professor Lyle Cox, tcdr. Steve Reitz, and lab technicians

Mr. Bob Mcronnell and Mr. Mike Williams were greatly

appreciated. Special thanks go to Barbara Gary for her

undivided support, assistance, and patienoe.

Jf

At

I. INTRODUCTION

This thesis addresses the design and partial

implementation of a memory manager for a member of the

family of secure, distributed, multi-microprocessor

operating systems designed by Richardson and O'Connell (1].

The memory manager is responsible for the secure ranaaement

of the main memory and secondary storage. The memory manaeer

desion was approached and conducted with distributed

processing, multi-processing, conflgi,,ation independence,

ease of chance, and internal computer security as primary

poals. The problems faced in the design were:

1) Developinp, a process which would securely manage

files in a multi-processor environment.

2) Ensuring that if secondary storage was inadvertantly

damaged, it could usually be recreated.

3) Minimizing secondary storage accesses.

4) Proper parameter passine durin. interprocess

communicaticn.

5) revelopin! a process with a loop-free 5tructure

which is configuration independent.

* 6) Designing, databases which optimize the memory

mana.-ement functions.

The proper design and implementation of a memory

manaper'ent process is vital because it serves as the

interface between the physical storage of files in a storage

system and the logical hierarchical file structure as viewed

by the user (viz., the file system supervisor design by

Parks (2]'. If the memory manager process does not function

properly, the security of that system cannot be -uaranteed.

The secure family of operating systems designed by

Richardson and O'Connell is composed of two primary mcdules,

the supervisor and the security kernel. A subset of that

system was utilized in the design of the Secure Archival

Storage S ystem (SASS). The design of the SASS supervisor was

addressedt by ?arks (2], while the security kernel was

addressed concurrently by Coleman (3]. The SASS security

kernel design is composed of two parts, the distributed

kernel and the non-distributed kernel. The design of the

distributed kernel was conducted by Coleman [3], and

processor management was implemented by Reitz (4]. This

thesis presents the design and implementatlcn of te

non-distributed kernel. In the SASS desin the

non-distributed kernel consists solely of the memory

manaer,

The design of the memory mana-er and its data bases was

completed. The initial code was written in PLZ/SYS, but
,i U could not be compiled due to the lack of a PIZ/SYS compiler.

A thread of tbe high level code was selected, hand compiled

S :I into PIZ/ASm, and run on the ZBOe develoljmental module.moue

If','a 11

"•m mIim

The P M/ASm thread listing is presented as a comrputer

proeram appended to this thesis.

A. BACKGROUND

Operatin systems were initally developed durinp an era

when hardware was a scarce and expensive resource, while

s,ftware was relatively inexpensive. The initial system

design technique was to begin with the hardware

configuratior and to build the operating system upcr it. The

"bottom up" design technique was practical, but it made the

operating system extremely hardware dependent. Fardware

confieuration changes would often force a major software

redesirr, but as lor g as hardware costs were dominant,

software modification was the lorical alternative. As the

functions required of the operating syster increased, rew

procedures were haphazardly added to the operating system,

often introducing new problems. Maintenarce and debugging of

I i the operatinr syster became extremely cumbersome and time

consuming.

The increased usae of computers in such fiel.s as

finance and sensitive information handling uncovered a

serious protlem with most operatine systems. Information

stored within a computer system was -enerally quite

* accessible to anyone who had a working knowledge of

oDerating system design and structure, regardless of ary

12

ad-hoc atterpts to provide internal computer security. Data

stored in information systems, with security added in, could

not be certified as bein- totally secure(l_].

Recent technological develop!,ents have reversed the

economics of the computer design environnent.

Microprocessors have become abundant, powerful, and

inexpensive. The relative cost of software, or the

otherhand, has steadily increased until it now dominates the

overall cost of a computer system.. This reversal has two

basic implications. First, software must be treated as the

exp ?sive commodity. Software developed should therefore be

logical, easy to read, relatively maintenance free, and easy

to debur. Second, more powerful hardware can be u.ed to

perform functions previously performed with software, arn

thus hardware (multiprocessors) can be utilized to achieve

overall system speed ioals.

fi I The ASS was developed utilizing a "top dowr." desien

technique, with informato- security as a primary desten

issue. Security was designed Into the system 'ased upon the
[.!I, security kernel concept (5]. The security kernel provides a

*IJ secure environment by ensuring that just one element of the

system (the security kernel) is sufficient to provide the

internal system security. All accesses of data stored within

. f the computer system must be validated by the security

Skernel.

f 13

B. ~BASIC CONCEPTS/DEFINITIONS

1. Process

Organick (6) defines a process as a set of related

procedures and data underpoin execution and manipulation,

respectively, by one of possibly several processors of a

computer. The process is a loprical rather than a physical

entity, and can be viewed as a set of related proc.edures and

data (referred to as the process' address space) and a ;oint

of execution within that address space. Each process may

have associated with it such logical attributes as a

security class authorization and a unique identifier. if

order to execute, the process must be rapped onto :bound to)

a physical processor within the computer syste,,.

A process ray exist in one of three states: blokedl,

ready, or rurning. Whea in a blocked state, the process rust

wait for the occurrerce of some event before execution can
continue (for exam,,le, an access of seconlary storap.e). W-1hen

the evant for which a blocked process is waiting occurs, the

process is placed, into the ready state which indicates that

the process can run when a processor Is availatle to be

assigned to It. The process is in thp runnina state when it

is executin, on a processor.

:i14

2. Process switching

When a process is blocked, the physical urocessor

upon which it is scheduled is Idle. For efficiency reasons,

it makes sense to freeze that process, save the execution

point (program status registers, pro-rai counter, execution

stack) ar.d the address space, and then schedule another

process to run on that processor. This is referred to as

process switching (or multiprcgrimming), and is an important

aspect of a distributed operatin- syster. The overall

system, such as SkSS, can be viewed as a set of cooperating

processes that interact to perform the intented functions.

f'f iclent process switching can only be achieved

with the support of sore hardware switchin, mechanism that

will unload tht blocked process' address .pace, and load the

address space of the scheduled process. Some systems have a

DER (descriptor base register) which is used to point to a

,4 list of multiple address spaces (one per process) which

exists In memory. Thus to change an address space, the DrP

need only be changed. The SASS utilizes a Z-800 supportird

1 hardware device entitled a Memory Vanaeement Unit (VtMU) to

allow efficient process switching. The MMU consists of a set

of registers (64 or 12E in the SASS design) which contain

the process' address space. Thus process switchirg would
i
4involve the switchinR of control to another hardware MV'U (if

a hardware MJ were available for each process), or

[15

1

alternately loadinpg a software MMU image (which is always

kept current) into the MMU whenever a process switch is

required. The SASS currently maintains a software MMU image

for each process.

3. Protection Domains

A user's process executing on a computer system has

an address space which includes the user provided procedures

and data, and also those portions of the distributed

operatin system which are required to support execution of

his program. To raintain system integrity and security, it

becomes mandatory to protect the operating system from beir."

altered or ranipulated by the user's procedures. To achieve

this, the process' address space is divided into a set of
hierarchical doma .ns which ensure that the segments of the

operatin, system are protected from the user. Since the top

down design cf the operating system provides a strict

hierarchal structure, the domains of the operatin- system

J are also hierarchical in structure (viz., are protection

rings). In the design of the secure operating system family,

three domains were defined: the user, the supervisor, and

the kernel.
• Operating system segments which manape the actual

shared physical resources reside in the kernel. The !Ternel

is the most privileged domain of the address space. It can
"' be envisioned as a mini-operatinR system that does all the

16

resource management. The security kernel segments

(executable) can only be accessed within the kernel. Global

(system wide) data bases are restricted to access by only

the security kernel to prevent the possibility of an

unauthorized inter-prccess leakage of information [7].

The supervisor domain resides between the most

privileged kernel domain and the least privileged user

domain. The supervisor contains those segments of the

operating system which are required to provide such common

services as creatine a hierarchical file system. The

Supervisor deals with the logical entities (segments) as

viewed by the user, and manages these segments by calls to

the kernel. To preserve the integrity of the file systen,

the user is placed in the least privileed domain, and can

communicate directly with the supervisor only.

Multiple protection domains may be implemented vta

, either a hardware and/or a software ring strvctur. A

hardware implementation Is more efficient, however the VLSI

microprocessors currently bein" manufactured provide for

only two protection domains. The present design of thp SASS

requires two domains, separating the supervisor and the

security kernel. The ZH0O, microprocessor provides the SASS

with the hardware rin- structure ty provtding two exe:ution

K modes, the system mode and the normal mode. The kernrl

K executes in the system mode and thus has access to all

segments, machine instructions, ar.d hardware facilities. The

Ii "__ _1

supervisor executes in the normal mode, and thus only has

access to a subset of the instruction set and seements. The

supervisor does not have access to those instructions which

manipulate the system hardware, such as special I/O and

execution mode control instructions.

4. Segmentation

Segmentation is the key element of a secure systeM.

A segment is a logical grouping of information such as a

procedure, array, or data area [8]. The address space of a

process consists of tlose seRments that may be addressed by

that process. Segmentation Is the management of those

seements within the address space. In order to address a

specific location within a segment two dimensions are

required, an identification of the seRment (e.., seeRment

number) and an offset from the base of the segnent.

Each seement may have several looical attritutes

associated with it. These attributes can inclvde segiment

size, classification, and access peri(.tted (rad, write,

execute). The physical attributes of a segment include the

current base address, and whether or not the segment is "In

core". The seement's attributes and its physical location In

memory are contained in a se.ment descriptor. The segr'ent

descriptors for a process are often contained in a

" descriptor list (viz., an ?MMU image for the SASS) to

facilitate the memory manapement of its address space.

! l
K 15r

Segmentation permits multiple processes to share a

sinele segment and to avoid the requirement of maintaininp

duplicate copies in memory. This eliminates the possibility

of having conflictinR data when multiple copies of the same

segment are maintained. Sementation also enables the

enforcement of controlled access to a particular segment,

since each process can have different access (read/write) to

stored seements. This capability of enforcine controlled

access is crucial to security.

Seeementation provides a mechanism for the

virtualization of memory (although not provided in the

SASS). If a user requests access to a segument to which he

has access rights, and that segment is not in main memor-, a

memory fault will occur which will cause that segment to be

loaded into main memory (another segment may have to be

moved to secondary storage to rdke room). Thus tc the user,

the size of main memory is virtualized into the size of the

process' address space.

5. .Inormatio Securt

As previously stated, tiere is an ever increasing

demand for a computer system to provide for the secure

storage of information. This security cannot be added to an

existing operating system with a large degree of confidence

that the resultinR security system cannot be avoided or

,A bypassed. In order to be demonstrably adequate, security

*119

must be desigred into the operating system, and must be part

of the cornerstone upon which the operatinp, system is built.

Thpre are two basic aspects of Information security,

external security and internal security. Fxternal security

prevents an infiltrator from getting to the object in which

the desired information is stcred. This can be of such form

as a fence, a safe, a sentry, or a guard dog. If an

infiltrator manaRes to penetrate these external security

measures, he then has access to the des.re6 information.

Internal cintrols would consist of those se:urity measures

internal to the computer which impede and if effective,

prevent a compromise of information. If the internal

controls finction properly, in.ormation is provided and

exchanged only with the users wnc are explicitly authorized

access to that information. Many information systems are

required tc store and access information of differ'nt

security levels (e.a., secret files intersPersed with

confidcential and unclassified'. The Internal security of

such a "multilevel" system must permit users and inforrraticn

to exist simultaneously at different security levels, ard

it also ensure that no unauthorized accesses (either

11.0 intenttnal or unintentional) are permitted. The SASS was

designed to provide a multilevel secure stora.e environment.

The data to be stored in a secure information system

S!. can be looked upon as a set of logical objects such as files

or records. Associated with each of these ob.je.'ts is a set

t2e
. !2

of subjects which have access rights to that object. These

access rights may include read access, write access, or a

combination thereof. The Don-discretionary security policy

involves checking the object's access class (oac) with the

subject's access class (sac) to ensure that they are

compatible. The access permitted is defined in a lattice

model of secure information flow (9) as follows:

sac = oac, read and write access perm.itted

sac o oac, read access permitted

sac < oac, no access permitted

The government security classification system

provides an example of a non-discretionary security policy.

A user with a becurity clearance of confidential is

authorized read and %rite access to a confidential file (sac

=oac), and he has read access (but not write) to an

unclassified file (sac > oac). This restriction oL write

access is to prevent the inadvertant writing of confidential

data into an unclassified file to which the subject nmay have

simvltaneous access (this prope.ty is often referred to as

the *-property (10)). Finrally, the confidential subject does

not have access to any secret files (sac < oac).

Tho discretior.ary security policy involves checking

the subject against an object's ac,'cs control list (ACt'.

.,h. subject only has access to an object if he is included

* " h! its ACL. This policy is analapous with the .overnlent's

need to know" policy, wnich precludes a subject with a

21

secret clearance from having access ri;,,hts to all secret

information within the system. He may access only that for

which he has a "need to know". The discretionary security

policy thus allows the users of the system to specify who

has access to their files. It is noted that the

discretionary security policy is a refinement o.. the

security policy, and never permits a violation of ti'e

non-discretionary security policy in effect,

The SASS was designed with the internal

non-discretionary security to b(- provided by the security

kernel. Discretionary security is provided by the supervisor

file system. The security kernel is based upon a

mathematical model which has teen proven correct. This

!mathematical model implements the system's security

policies.

The security kernel design has threa prerequisites

in order to provide a secure environment: 1I the kernel must

A %e Isolatpd to ensure that it cannot be modified either

Sintentonally or inadvertantly. This is to ensure that the

behavior of the kernel cannot be modified. 2) Each and every

2 i attempt to access data within the system must invoke the

kernel. 3) The kernel's correctness must be -' :fiatle. This

implies that the zrathematical model must be proved and

demonstrated as secure, and that the kernel implemnents this

model.

K" 22

C. THESIS STRUCTURE

This thesis presents the detailed design of a memory

tranaeirent process for the SASS7. The top down design

technique was utilized, with levels of abstraction used to

reduce the design complexity. The high level lan6uage

utilized was PLZ/SYS, which was designed to be compatible

with the ZeMe microprocessor. PLZ/STS is a block structured

lanRuawe similar to PASCAL. The compiler which compiles from

PtZ/STS to the Z8o£e instruction code is still in the

developrental stage at ZILOG, INC. The PLZ/SYS code had to

therefore be "hand compiled" (viz.,translated to the ?'Z/ASM

assembly lanzuage) in order to run, test, and debue the

code. Fome of the procedures in the lower levels of desi-n

(those which use privileged instructions to directly

manipulate the system hardware) must be directly coded using

the assembly code FLZ/ASM. These procedures were declared

external to the Memorv_ anader_PLZ/Y3 Xlodule and are coded

in the Memory 1anarer_?LZ/AS'*-%odule.

Chapter II of the thesis presents an overview of the

SASS at its current stage of development. The design of the

memory management process, and the concurrent implementation

of the distrlbuted kernel processor rranaeenent by Reitz Z4]

refired the original desigr of Parks and Colema. Future

wcrl in the SASS will rost l1!:ely require some refinemert of

t ,he paresent desln.

23

Chaptpr III presents the detailed design of the memory

r.anaper rodule. This cheater emphasizes why certain design

features were chosen, and how they were implemente, in this

design.

The final chapter presents the status of research to

date, and attempts to identify what follow-on work, is

required. The PLZ/SYS code module and the PZ/AS. code

module are preserted as aDpendices.

I!

II. SCIRE ARCHIVAl STORAGE SYST!M rSIGN

This chapter presents an overview of the SASS in its

current state of development. It is a stimmation of the

oripinal desivn efforts, and reflects refineirents of those

original desi .s. This overview is necessary in order to

fully understandl the Interrelationship between the m.eory

manazer and the overall systen design. It also prolriies a

current base for further SASS developnent.

A BAOIC ov-VITW

The purDose Cf te Sk.' is to prcvide a secure archival

file storare riedium for a varicble nnmber of host ,omputers.

The kev deslan 4cals of the SASZ Were multi-level internal

computer security and -or.trolie sharine, of dati amon

authorized users.

Figure 1 provides an exarple oC hcw the SASS could be

used. In this example, there are four host computers which

r.side in four se-parate rooms (consider e'ich of these

coirputers to be microcomputers, although any computer could

b(: utili7ed). Each of the four hosts are used to create and

ranpulate files of fixed predetermi-ed security

classification. For example, all files cr .ated ty host e2

4 are classifted secret. Host #2 cannot create top secret,

25

TOP SECRET SECRET CONFIDENTIAL UNCIASSIFIFD/
CONFIDENTIAL

HOST 1 HOST 2 HOST 3 HOST 4

__S UPERVISOR MMR

MEMORYSTRG

SASS

, Fipure 1. SASS System

j 26

,1

confidential, or unclassified files (nor can he access top

secret in this example). Access to each of these rooms is

physically controlled to ensure that only personnel with the

proper security clearance are authorized access. None of tn

host systems have a permanent local file storage device, and

all arp hard-wired to an I/O port of the SASS.

Tach host controls the access to its I/O ports (host 04

illustrates the multi-level host connection currently

required by the SASS). The physical protection of the

hard-wire is assummed to be adequate to miri;ize tne

possibility of such malicious activities as wire tapping or

emanations monitoring. Once a user o: the ho.t systen

completes his work, he can permanently store his file on the

3ASS, which is contained in the fifth room of firure I (A,ew

the SASS as an Z.ECL microcomputer with access to secondary

storaee devices). To pain access to a file, the user or 0/?

of the host syste'm must request the SASS to provide him wit'

that file. This irplies that if a malicious user gains

iacpss of the confidential nost syster, he still can r ot

a.7cess files of a hther classification.

'The SASS must te capable of performin? three basic

functions in this environment. These functions are: 11 store

a file for a host system, 2) retrievP a file for a host

system, and 3) ensure that the the files are mide available

4'. only to authorized users. The required capabilit,: of file

storage and retrieval implies that prccesses must exist fcr

27

each host system to perform file management and data

trarsfer on behalf of that host. To ensure the security of

the stored information, the SASS must ensure that the user

of a specific host system may only address the files to

which he has access. The SASS achieves the desired

environment through a distributed operating system design

wbich consists of two primary modules, the supervisor and

the security 1rernel (the security kernel actually consists

of istributed and non-distributed portions). !ach host

system, which is hardwired to the SASS, communicates with

its own I/O process arO file manager Drocess in the SASS

itself.

The supervisor is responsible for the SASS-hcst system

interface. It constructs and manai'es a hierarchical file

system for its host, based upon tha files which the host has

subrittei, ani controls the actual I/O (both data and

corrmards) between the SASS and the host svst r. The

:4 supervisor is built upon the security kernel ani performs

the host's requrets (file storage, file retrieval, I/O) by

calls to the security kernel. These calls must be validated

(ty a ate keeper module in the SASS design) before the

security kernel function is invoked.

The SA SS securitv kernel consists if a distributed and

: non-distributed kerrel. The distributed 'rerrel is

ii distributed to (viz., is in the address space of) every

process, and is recpor.ible for tle multiple!irng of thei22
!/I

several processes onto the actual hariware processor(s',

Pnforcinp the non-discretionary security policy, and

providinR the synchronization primitives for inter-Dro,ess

communication. The non-distributed kernel consists of the

memory manazer process which is responsible for the secure

management of both main memory and secondary storage. Each

hardware processor must have its own memory manaer (ero.

non-distributed kernel) in the SASS desin.

An abstract system overview cf the SASS is presented in

figure 2. Four levels of abstraction were utilized to

simplify the design and understandability of the system.

Level 0 consists of the system hardware which includes

the Ze'C1 micrnprocessor, the local and global memories, and

secondary storare. The qASS is designed to orerate in a

multi-micronrocessor environment, therefore each ?.U is

acsined its own local menory (to which it alone has access'

in which it car. store process local segments. The system

contains a eglobal memory, which every C.?J ray access.

Segments to which a user process has write access must be

:'-red in Plobal memory if0 more than one orocess has

simultaneous access to that segment. This is to ensure that

all processes access the currAnt copy of that shared

writable segment. The basic storage policy is to store every

segrent within local memrory if at all possible. This is to

' keen bus contention between processors, which access global

memory, to a minimum.

Secret
Host 1

Level 3 Host

IModuleI Mod - ule

G-ate

Level 2 Supervisor
Keeper

Traffic .

Contraillert
Memory
Manager

' Trafficj
]Contrcler .

/ \

Level 1 Kernelo N

,, __ __ _ __ _ __ _ __ __ _ __ _ __ _

Level 0 Hardware

Data
I Control--- -
A.f

* Figure 2. SPSS Abstract System Overview

.i

Level I consists of the distributed and non-distrituted

kernel. The kernel is placed in (executes in) the rrost

privile.ed domain (system mode) of the Zac1i to ensure that

it is protected from any manipulation (either malicious or

inadvertant). The kernel controls all access to the system

hardware by maintaining all privileged machire instructions

within its domain. Only the kernel may access these

instructions. The distributed kernel is responsible for

creating a virtual processor environment and enforcin?, the

non-discretionary security policy. It multiplexes processes

onto virtual processors and then multiplexes these virtual

processor(s) onto the actual hardware processors. The

non-distrlbuted kernel consists of the memory manager an is

responsible for the secure manai-ement of toth main memory

and secondary storage.

Level 2 -onsists of the supervisor, which resides in the

1 less .!-ivileeed domain (normal mode) of the 1

r.icroprocessor. It has access to all the rrachine

instructior.s with the exception of those which manipulate

the syster hardware. The supervisor must request the kernel

to move segments into and out of memory and secondary

storage v a the jate keeper ,a software assisted

ring-crossirg mechanisp). The superviscr consists of two

surropate processes for each host, the I/O (inDut/outDut1

Drocess an the FM (file management) process. By utilizin,

the 1/0 and Dprocesses the suDervisor is Elz to -rovide

and manage a virtual file hierarchy for each host system.

'Each bost system has I/O and FV processes created and

assianed at system generation. They are not dynamically

created or deleted. The supervisor ensures that each

segment's discretionary security is enforced.

Level % consists of the host computer systems. These

systems are hardwired to the I/O ports of the Z-AM. The

hosts rommunicate with the SASS via system proto(ols over a

cornmunication link. Any computer system could serve as a

host, with each host supportinp, multiple isers.

. U P30RV IS OR

Fach host system is assioned the dedicated services of a

pair of supervisor processes at s:ystem generation. These

nrocesses are the I/0 and SM processes. The FM proces and

the I/11 process communicate with each other via a shared

segment entitle, the "mailbox". This commurication is

synchronized via the kernel synchronization priritives w. i.h

,;I act uDon eventcounts and sequencers IZ). A virtual fi!le

systerr is created and maintained for each host by its FM and

I/O processes.

1. File Manaierrent Process

A:i The FM process is responsible for the management of

the host'r virtual file system wi tniU the SASS. The FM

32

process interprets all the host commands and acts upon them

in conjunction with the I/O process.

The user of the host system views his stored data

(within the SASS) as a hierarchy of files. Figure 3 provides

an example of such a hierarchical file structure. To specify

a particular file, a pathnarre is required. The pathnare is

simply a concatenation of the file names (given to each file

by the user at its creation) starting at the "roct"

directory ind procedinp sequentially to the desired file.

The user is required to submit a pathnarre with Pach command

sent to the SASS. The five basic actions to be performed

upon files at this level are: 1) to create a file (data or

,irectory), 2) to delete a file, 3) to real a file (data or

directory). 4) to initiate or modify file attributes (size,

classification, access permitted), and 5) to store (writel a

file.

The FM process is required to convert the pathname

)rovided ty the user, into one or more segment numbers. This

is necessary because the notion of a file is not knour,

within the kernel. Il! files are composed of sements, and

rust be referenced as segments within the kernel for

manipu]ation and management. The F' process must also

provide appropriate command handlers to ensure that the

user's requested act'on is properly carried)at.

The SASS permits a host to read or write the files

of another host, at the same security level, if

33

F:7

IHos t_1 Host_2

Sm~ith ', hi te
JQnes- Black
Adams GreeL_":

dii

Smith Adams Greer.

File 1 File A ir 1

4- File C iie

File 1 File C Dir 1

File GI
File G2

Data Data File G3

Figure 3. Virtual File H'Ierarchy

34

discretionary access is permitted. Files of lower

classification may be read only (if discretionary access is

permitted). This file sharing is achieved by creating a link

tetween the two file hierarchies. This link is entered into

a directory file of the host, and is constructed in the same

manner as a pathname (viz., it is a concatenation of

filenames). The kernel enforces a read only access to the

lower classified files, which prevents the possibility of

writing data (through a link) of a higher classification

into a file of lower classification.

The database utilized by the FI process to manape

t.e host's files is 0~a FM Krown Semient Table (FMKST. The

F KST is a list of those segments which are known to (vi?.,

within the address space of) the FM process. Fizure 4

provides en example of the 71,MKST structure.

Whenever a user of a host syster requests access to

a specific file, the F,'.'_ST is searched to determine if that

pathname (segment) is already known. If it is known, the

request is passed to the kernel, via the gatekeeper, with

the appropriate -,!t number, for the desired action. If

the pathname is not known, the segment number of the desired

'Ile's directory (parent) file and an entry number are sent

to the kernel with the request to rake that segment known.

If the request is authorized by the kernel, a segment number

and access mode authorized are returned. The returned

segment nuber and rode are then entered into the 7,M FST

35

Path SgmAccess Use
Name egyMode

Host 1>Adams>File C 5C N

Host.2Green)Dir-l 44 W Y

Host 1'>Smith*>Filel1 22 t4 N

PEoSt...>Srith>LinklI 44 R T

Fi~ue 4 Fie Maage Knwn Spmet Tble

j 3S

with that seement's pathname. Once the sement is knowr., the

desired user action can be carried out.

The user requests to create or delete files are

simply passed to the appropriate kernel procedure, via the

gate keeper, by the FM process (after a discretionary

security check). No entries are added or deleted from the

FM_,T during create cr delete requests (they invoke kernel

primitives which add or delete entries from a kernel data

Should the TM process request that a seerment be

swapppd into memory and memory is full, an error code will

be returned to the xTM process from the kernel (it is noted

that this is a per process memory allocation, thus the

memory state cannot be affected by its use by other

processes). The FM process will then select a segment to be

removed frer core to make roo. for the desired sepment. The

current desipn calls for the Invocation of a least recently

useO algorithr (IR") which ma*<es use of the FPiKS "use!"

field to deternine the least recently used segment for swap
F:'

, out.

riscretionary security is enforced in the

discretior.ay security module of the FM process. An access

control list (A.CL) is maintained for each file within the

file hierarchy. The ACL is simply a list of authorized users

• (a refinement of non-discretionary security' which isj '/ checked for each access to that file. The discretionary

[ii IV3 -e

security mrodule also performs the housekeepinp functions for

the file's ACL. These functions include the addition of a

ACL entry, the deletion of an ACt entry, and the

initialization of an ACl for a new file.

It is noted that the orizinal design of the FM

process contained a memory marager procedure. This was

necessary because the original SASS design called for the

partitloninr of mtmory such that each supervisor maintained

his own core. The FM memory manager managed this vi-tual

core by calls to the kernel via the pate keeper (swapir,

swapout). The current design of the non-distributed kernel

Includes memory allocation and thus has removed the need for

the supervisor to mar.aige its own virtual core. lecause of

thi, a .. : ,enorv manaper is not required.

2. Input/Output Process

I The I/0 process is responsible for all the input and

output betweer tho supervisor and the nost computer systerm.

The I/0 process receives its commands from the FM process

via the shared mailbox sergment.

Data is transfered between the host systems and the

vkSS in fixed size "packets". There are three basic types of
packets, a synchronization packet, a cormand packet, ani a

I date packet. Protocols exist for the reliable transmission

and receipt o? the packets by both the SASS and the host

sy stems. The current desii3n calls for the use C,'f

3a

multi-Dacket Drotocols, which allows the sender to send

several packets before he receives a receipt.

The origiral design of the i/O process ccrtained a

memory Manager procedure for the same reasons as the FM

process. This procedure is go loneer required due to the

design of the non-distributed kernel.

C. DISTRIPUTrED FERNEL

The initial desin of the security kernel as presented

by Coleman (3), has been developed by Reitz (4] an! the work

Dresented here. The primary reiinements have been the

replacement of block/wakeup [3] by eventcounts, the

inclusion of an event mana;er which contains the

synchronization primitives, and the trarsfer o MTJ

ranapement to the memory manager. Figure 5 provides an

ovprvipw of the security '-ernel design.

2 1. -aTe eer

Tho pate keeper is a software ring crossing

II mechanism which is utilized to ensure that the se-urity

*! kernel is isolated and ta perproof. The major issues of the1atekeeper design ar,: 1) to provide a role swit--hinm

mechanism for switchine frcm normal supervisor) mode to

! 1 system ('e rnel) mode 2) to mask hardware preempt

interrLnts in the kernel, and 3) to check for "virtual"

[39

Know SegentEvent
Se~mnt Tabl- - manager Manager

Mectiveciv

Prcess Connler

Processor -- Traffic
Table Controller

Kernel
Hardware

CPU MMU MMU CORE IS
IMAGE

~t ii
Figure 5. Security Kernel resien.

410

sctware nreemot interrupts when leavIng the kernsl. The

eate keeper provides the sole entry point into the kernel

domain, validates the request and its arguments, and

transfers the request to the appropriate kernel procedurp.

I f the rate keeper encounters an error, it retvrns an

appropriate error code without irvoking the kernel.

The Pate keeper uses a parameter table to validate

the user's request (call by value only). This table contains

the number of parameters required by each kernel function

(create segment,delete segment, etc.), the type of each

parameter, and the type of each return parameter. If an

error is discovered during the validation process, it sets

the return messae to an error code. If t.e request is

val ,, the gate -ee er calls the apprcOriate kernel ,.cdule.

The gate keeper is a trap handler. The supervisnr

D nuts an argumert list and space for a return !'ssape in a

segnrent (or Processor repistersN within the su.ervisor's

A domain. When the F'ate !reeper is invoked, it must firFt save

the supervisor processor reisters and then retrieve the

rpuariunent lI t (via an argument list pointer repister). The

4 arguments are vilidated and if correct. passed to the

appropriate kernel modile.

';her the kernel completes action taken upon the user

request, it returns to the gate keeper. The Pate keeper then

• copies a return messape into the return argument (that is

i' returned to the s.u-erviscr's dom ain) , restores the

i i

Supervisor's envirorment, unmasks the irterrupts; and rakes

a trap return back to the supervisor (viz., changes the mode

back to normal).

2. Segment Manager

The segment manager is responsible for the

'rana~eeent of" the segmented virtual memory. There are six

fNnctions which the segment Mar.ager is called vpon to

nerform. These functions are: 1) to create a segirent, 2; to

delete a segment, 3) to make a segmrent known, 41 to make a

segment unirown (terminate), 5) to s-ap a segment intc core,

and 6) to swap a segment out of core.

The sePgment mara ger uses the Known Segrent Table

(KST) as its data base to manaae seprrer.ts. The KST is a

process lecal 1ernel data base which contains entpies for

all the segments which the process has made known. Fieure 6

provI.es an example of the KST structure. The KST size is

fixed at system ,eneration. It is Indexed by segment nvrrbers

which are assigned by the segment marager. When a segment is

rade known, a "handle" (the concatenation of the Global

Active Segreent Table (GAST) index and the segment's unique

identlficationO is returned to the segment mar.ager by the

memnory :imanaZer. The handle Is a systen wide unique

identification that is assipned to ea-h active sepment

(viz., acive in the GAST) . The KST provid.es the rm apin

rec.anisrr for convertin, the sement nunber into tIe

I1!

[Segment-#

Access In
MMEandle Size Mode Core Class

4J

~i .1 iEgure 8. Known Se~rnent Table.

.] , 43

segment's -rique handle. The use of' the unique handle by the

r emory mana ., is what permits the controlled sharing of

seg-ments by concurrent processes. Any process which requests

to make a specific segment active will always be returned

that segment's unique handle. Thus any one segiment may exist

within the address space of several processes (with a

different segment number in each process) while residinR in

one location in metrory.

The SIZE field of the KST represents that segment's

size. Oegr-nts exist in multiples of 256 bytes due to Z-A.M

IM1 U hardware constraints. An upper bound upcn the segment

size is fixed at system &eneration by the design parameter

max seg r.t_size. This is lirnited to 65K bytes by hardware.

The ACCSS_ nOt field states the access authorized to the

segment (road, write) by this process. The INCORT field i%

set when a process successfully requests the sei'ment to be

swapped irto core. The CLASS field is used to give the

access class (e.'., secret, confidential, of the sepmer.t.

The usual sequence of invoking the segriert mnager

functions (by the supervisor) would be as fellows: 1'

Create _egrrent (this will invoke the memory manager to

assign a unique identification to the created sepment', 2)

MakeKnown, which will place the segment irto the KST, and

.3) SwapIn, which will move the segment fro' seondary

storape to main memory. To remove a segment from main remory

44*11

to secondary storage, the order would be 1) Swap Out, 2)

MakeUnknown, and %) Delete Segment.

3. Event Manager

The event manaeer provides the kernel

synchronization priritives that are used for the

synchronization of concurrent processes in the supervisor of

the present SASS design. The synchronization mechanism i-sed

is that of eventcounts and sequencers, first proDosed by

Feed and Tanodia [IC]. The use of eventcounts and sequencers

allows the ordering of events to be controlled directly by

the processes involved, rather than to depend upon [rutual

exclusion mechanisms such as semaphores. The actual

eventcounts are rraintained in the memory manaper rodule as

they are a cystem wide entity and are not process local.

Reed and Kancdia define an eventcount as an cbject

that keeps a count of the number of events in a particula-SW
- class that have occurred so far in the execution of the

system. The event observed can be anythinp from the input of

j;4 data to the system, to writing a particular seiyment. The

eventcount 'an be viewed as an integer value, which is

incremented with each occurrence of the observed event. The

primitive ArVANOC'(X) is used to siral the occurrence of a

particular event, anO causes the eventcount X, associated

with that event, to be incremented. The primitive 3'Ar'

will return the value of the eventcount X. The priiritive

45

A.AIT(.,n) will suspend the callinR orocess until the value

of eventcount X is greater than or equal to the integer

value n.

A seqcaecer can be defined as an abstract object

that can be utilized to totally order the events of a

particular class. The basic purpuse of the sequencer is to

provide a means to determine an ordering of a set of

occurences of a particular event. like the eventcount, the

sequencer can be viewed as an integer value which is

increnpnted each time the primitive T!ICET(S) is called. The

TICKET primitive is based upon the ticket m,,chires often

used in barbershcps and ice crearr stores. When a customer

enters, he takes a ticket, from which the order of wbo

arrived first and whom will be served rext can be

determined.

The use of eventcotnts and sequencers by the SAS

supervisor cin be illustrated -,s follows. Suppose that

s .ement A is currently teing updated by process one.

Fventcount A currently has the value of 9 (the evenrtcount

asociated with the readinp of sei'ment A). Process two

desires to read se.rrent A, so he obtains a ticket by

utilizing the TICKET primitive associated with seerment A.

The value returned ty 7ICK7T is i. Process two nou calls

upon the primitive, AWAIT(A,10), which will suspend process

two until eventcount A is valued at 1. -then Drocess one

comnletes his update, he will ezecute ADVANC E(A), which will
SI6

.? -

increment eventcou:.t A to the value cf 10. This will allow

the AWAIT(A,1) to return to process two, which %ill then le

alloweO to read segme:nt A.

4. Traffic Controller

The traffic controller performs tne function of

schedulnp processes to run on virtual processors. The

traffic controller cculd te designed to schediile processes

to run directly on the Iardware processors, but in this

design, Reed's (I1 notion of a two level traffic controller

was utilized. Thus the processes are first multiplexed onto

virtual processors by the traffic controller. The virtual

processors are then multiplexed onto the act'al hardware

processors by the inner traffic controller.

A virtual processor is an abstract data structure

which preserves all the attritutes o! a process in execution

on a processor (i.e., an execution point and ar address

space). Multiple virtual processors ray exist for a single

physical processor. The Active Process Table (APT) is the

data base utilized by the traffic controller to contol and

manage the multiplexing of processes onto virtual

j processors. Figure 7 provides an example of the the APT.

The APT is a fixed sized tatle which contains an

* ertry for each process of the SASS (the processes are

created at system -eneration). Because o f the de sig

decision rot to create or destroy pro esses after system

47?

ProcessIndex

DBR Priority State NextReady
Active-Process

Fizure 7. Active Process Table.

48

,eneration, the initial entries into the APT will be active

for the life of the system. The index into the APT is the

PROCESSID.

The traffic controller uses the PRIORITY field of

the APT to determine which process to schedule for execution

on each virtual processor. The STATE field contains that

process' current state (running, blocked, or ready). The DPR

(descriptor base reeister) field of the APT provides the

address o16 the MMU image for that process. The Next Ready AP

field is a pointer which contains the index of the ne~t

process which is in the ready state.

The design simplification choice of always havin, a

process runnin" on the virtual processors, introduced the

notion of an idle process for each virtual processor. The

idle process is loaded onto a virtual processor and placed

into the rurnirp state whenever the number of available

virtual processors exceeds the nuirber of ready or runninR

processes (excludini- the idle process). The idle process is

o " the lowest priority, and will only run if no other

process can be loaded. It is incapable of blockin, itself,

and thus must always be in either the running or r-ady

I i state.

When a virtual processor becomes avallable, the

traffic controller will be invokei to schedule the hiphest

, priority ready process which may run on that particular

virtual processor. If no process is ready, the Idle nrocess

l

is scheduled. The Idle process provides a means to euarantee

that a ready process will always be found, and that the

Traffic Controller cannot be exited without scheduling a

process.

5. Inner Traffic Controller

The purpose of the inner traffic controller is to

provide the multiplexing of the virtual processors onto the

actual system processor(s), and to provide the kernel

primitives for Inter-process communication within the kernel

(Signal ani 'eit). In the SASS design, each physical

processor has a fixed set of virtual CPUr's that it

rultiplaxes. The primrary data base utilized by the inner

traffic controller is the Virtual Processor Table (VT).
Figure i provides an example of the 'IT.

The YDT is indexed by the VirtualProcessorIj. T.e

D-), "RI, and the STATE fields are used in the same manner

as those fields in the APT. The Idle-Flap simply indicates

that the i.l,% process is loaded on that virtual Drocesscr.

The Preempt flap indicates thit a virtual preempt interrupt

has been directed to that virtual processor. The

PhysFro!essor is a fixed field that indicates which

hardware processor that virtua.L processo,- is sched-led to

run on. The Next Ready VF is a pointer to the index cf the

] ; next ready virtual processor in the VPT for this CPT.

In his ,riginal design, Cole~r-an [31 tasked the inner
.i

P IDI VPID

.... _ _ _ _ _ _.. ...
lDBR Pri State Idle Preempt Phys Next losg

Flag Flag Proc Rdy.VP List

ill
i'

Figure e. Virtual Processor Table.

51

traffic controller with the manaerrent of t.'e hardware

Memory Manapement Units (which contain the process' address

space and its attributes) and the MMU software imar'es. In

the present design, this function has been assigned to the

memory manager. When the inner traffic controller unloads a

processor, it simply writes the MMU into the VMU image in

order to save the segirent usage information. To load a

Drocess, it writes the MMU image into the MM!U. The rerory

manager insures that the MMTJ imae;e is kept current by

1updatine the images whenever a SeRment is swapped in or

swapped out of memory.

The kernel synchronization primitives of SIGNAI and

''AIT are maintained within the inner traffic controller.

These priritives are used by virtual processors within the

kernel domain to synchronize with other virtual processors

within the kernel domain.

. "N-ISI!zUTTZ KrN7L

The SASS non-,istril'uted kernel is composed solely of

the .,emory r'anager process. Fach physical processor has

associated with it, its cwn dedicated r emory manager

process. The purpose of the process is the proper and secure

management of the main memory (both local and global), and

"* secondary storaze. The actual transfer of segments from rain[memory to secondary storage and vice-versa, is controlled by

ci\
I Ii ~ iI I l II I I II... I 1 I 52I I

the mi~mory manager process. The primary data base utilized

by the process is the Active Se~nent Table. Chapter 3

k ~orovides a detailed description of the process' functions

and data tases.

53

III. MEMORY MANAGER PROCESS DETAILED DESIGN

A. INTRODUCTION

The memory manaRer is responsible for the manaeement of

both main memory (local and ,'lobal) ard secondary storae.

It is a non-distributed portion of the kernel with one

memory manaer process existing per physical processor. The

memory manager is tasked (via signal and wait) to berform

memory mana-ement functions on behalf of other processes in

the system. The major tasks of the memory manager are : !)

the allocation and deellocation of secondary storae, 21 the

allocaticn and deallocation of global and local memory, Z)

segment transfer from local to ?lobal memory (and vice

versa), and 4) segmernt transfer frc, secondary storaize to

main memory (and vice versa). There are ten service calls

(via signal) which task the merory manager Process to

perform these functions. The tea service calls are:

CREATE ENTPT

ACTIVAT E
DEACTIVATE
SI-AF IN

DEACTIVATE ALL

"7PDA .F?,

* Upon completion of t~e service request, the memory manager

4: returns The results of the operation to the waiting roCess

oprtinprcs

(via signal). It then blocks itself until it is tasked to

perform another service. The hardware configuratiorn managed

by the memory manager process is depicted in fip-ure 9. The

shared data bases used by all memory manager processes are

the Global Active Segment Table (GAST), the Alias Table,

the Disk Bit Map, and the Global Memory Bit Map. The

processor local data bases used by each process are the

local Active Segment Table (L_.ST). the Memory Vanagement

Unit IrF ges and the Local Memory Bit Map.

P. DESIG. PARAMETERS A1FD DECISIONS

Several factors were identified during the design Pf the

memory manager process that refined the initial kernel

design of Coleman[,Z]. The two areas that were modified, were

the management of. the .MMU images and the manarement of core

memory. oth of these functions were nanaed outside of the

A, m'emory manaper in the initial desigr. The inclusion of these

functions in the memory manager process s5inificantly

irprovep the looical structure of the overall system design.

Additional deslgn parameters were established to facilitate

the initial irplementation. These design parameters reed to

he addressed before the detailed desiga of the rerrory

manai:er process is presented.

It was d-cidd to make the block/page size of' both maInf t memory and secondary storaRe equal in size. This was to

55

W U

4>

VIz /

VI

4'

>4

Figure 9. SASS H/W System Overview.

S6

tit,

simplify the mapping algorithir from secondary storage to

main memory (and vice versa). In the initial desin tie

block/paae size was set to 512 bytes.

The sizP of the pae table for a seprent was set at one

page (non-paged page table). This was to simplify

implementation, and had a direct bearing on the maximum

segment size supported in the memory mana.er. For example, a

page size of 256 bytes will address a maximum segrer.t size

of 32,76P bytes, while a pate size of 512 bytes will address

a segment sie of 1317 2 bytes.

The size o" the alias table was set to one pare

(non-paged alias table). The number of entries that the

alias tablo will support is limited by the size of the page

table (viz., a Dae size of 512 bytes will support up to 46

entries in the Alias Table).

In the oriinal design, the main memory allocation was

external to the memory manager. This was due to the

*1 Dartitioned memory manaRement scheme outlined by ?arksr21

and Coleman[',]. I. the current design, all address

assiwnrrent and segment transfer are manated by the rerrory

manaer. This desi-n choice enhanced the generality of the

dpsipn, and nrovided support for any memory management

i.4 scheme (either in the memory manager or at a hiher level of

abstractlon'. However, the current design still has a

maximum core constraint for each process.
'I

.y 57

lt

Dvnamic memory management is not implemented in this

design. Each process is allocated a fixed size of physical

core. Fowever, it is not a linear allocation of physical

memory. The design supports the maximum sharing of segments

in local and Plobal memory. All segments that are not

shared, or shared and do not violate the readers/writers

problem will reside in local memory to eliminate the Plobal

bus contention. The need to compact the memory (lecause of

fragmentation) should be minimal in this design due tc the

maximum sharing of segments. If contipuous memory is not

available, the memory manager will corpact main merory.

After compaction, the memory can be allocated.

The estr decision to represent remory as one

conticuous block (not partitioned) was made to support a

dynamic ,nemory management scheme. Without dynamic nemory

manaRement, the process' total physical memory can not

exceed the systems main memory. The supervisor knows the

-J size of the segments and the size of the process' virtual

core, therefore it can manage the swap in and swaD out to

4ensure that the process' virtual core has not been exceeded.

In the original design, the user's process inner-traffic

controller maintained the software imapes of the memory

management unit. This design required the memory manager to

return the approuriate memory mana,,ement da~a (vIz.,se.rment

I location) to the kernel of the user's process. In the

current design, the software irra es of the 'MU are

j I

"

maintained by the memory manager. A descriptor base pointer

is provided for the inner-traffic controller to nultiplex

the process address spaces. The ?VMTT imrage data base does not

need to be locked (to prevent race conditions) due to the

fact that process interrupts are masked in the kernel. Thus,

if the memory manager (a kernel process) is running then no

other process can access the VMU ima-e.

The system initialization process has not been addressed

to date. Fowever, this desion has made some assumptions

about the initial state of the system. Since the memrory

manaer handles the transfer of sements from secondary

storage to main memory, it is likely to be one of the first

processes created. The memory manarer's core irae will

consist of its pure code and datd sections. The mizimal

initialization of the memory manager's data bases are

entries for the systerm root and the suoervisor's serments in
)(the G AST ard I _4ST(s), and the irnitializaton of the 111 'U

ima.es with the kernel segrents. The current destsn does not
,.31 call for an entry in the G AST or t AST for the kernel

Hsegments. However, when system ?eaeration is desi;,ne4 this
i' !!will have to be readdressed.

The original(31 memory manager data basos have bee.

refined by this thesis to facilitate the memory manag.ement

functions. The major refir.emerts of the global and local

active segment tables are outlined in the following section.

59
tI

A

C. DATA BASES

1. Global Active Segment Table

The Global Active Segment Table (see figure le) is a

system wide, shared data base used by memory manager

processes to manage all active segments. A lock/unlock

mechanism is utilized to prevent any race conditions from

occurrin.. The siEnallinR process locks the GAST before it

signals the memory manager. This is done to prevent a deadly

embrace from occurring between memory iranaer processes, and

also to simplify synchronization between memory managers.

The entire GAST is locked in this design to simplify the

iiplementation (vice lockine each individual entry).

The QAST size is fixed at compile time. The size of

the GAST is the product of the GAST record size, the

maximum number of processes and the number of authorized

Irnown segments per process. Although the GAST is of fixed

size, it is plausible to dynamically manape the entries as
proposed by Richardson and O'Connell(l]. The current memory

manaaer design could be extended to include this dynamic

management.

The Unique Id field is a unique segment

identification number in the GAST. This field is four tytes

..1) wide and will provide over four billion identificaticn

numbers. A desitn choice was made not to manage the

k1

Index-#

* Flag Bits
Unique Global Processors G ASTE #

ID Addr LASTE_# Written Writable Parent
Bit Bit#e #1I _ _ _ _ _ _ _ _ _ _ _ _

Si - -

* Field indicates a two processor environment

Active No. Page Alias Seq- Inst- Inst-
In Megrory Active Size Table Table uencer ancel ance2

Depend. Loc Loc

I

Figure le. Global Active Segment Table.

4i 61

fij

reallocation of the unique_id's. Thus when a segment is

deleted from the system, the unique id is not reused.

The Global-Address field is used to indicate if a

segment resides in global or local memory. If not r.ull, it

contains the Plobal memory base address of a segment. A null

entry indicates that the segment might be in local

memory(s).

The Processors1-ASTE_# field is used as a connected

processors list. The field is an array structure, indexed by

ProcessorId. It identifies which LAST the segment is

active in, and provides the index into each of these tables.

The design choice of maintaininp an entry in the I AST for

all locally active sements ir-plies that if all entries in

the Processors LASTIE# field are null, the seemert is not

active an(can be removed from the I AST (viz., no

processors are connected).

The Vl.agPits field consists of the written bit, and

K the writable tit. The written bit is set when a segment is

swappe out of memory, and the v'.M;T imare indicates that it

has been written into. The writable bit is set durin.

segent loading to indicate that some protcess has write

access to that sepment.

If an active segment is a leaf, the GASTE_#Parent

field provides a back pointer to the GAST index of its

K Darent. This back pointer to the parent is important durirp-

All the cr~ation of a segment. If a request is received to

6m

create a sement which has a leaf sepment as its Darent,

then an alias table has to be created for that parent. Also,

the alias table of the parent's parent needs to be updated

to reflect the existence of the newly created alias table

(see figure 11). The indirect pointer shown is the back

pointer to the parent via the GAFT.

The NoActiveIn_Memory field is a count of the

number of processes that have the se.ment in elojal memory.

It is used during swap out to determine if the segment can

be removed from Plobal memory.

The No Active_Dependents field is a count of the

number of active leaf segments that are dependent on this

entry (viz., require that this segment remain in the GAST).

fach time a process activates or deactivates a dependent

seement this field is incremented or decremented.

The Size field is the size of the segment in bytes.

The Pape Table location field is the disk location of the

Dage table for a segment, and the Alias Table Locatior field

is the disk location of the alias table for the seg'ment. The

AliasTablp field car be null to indicate that no alias

table exists for the sepment.

The last three fields are used in the management of

event^cunts and sequencers [4]. The Sequencer field is used

to issue a service number for a segment. The Instance 1

Y j ~field and Instance 2 field are event,-ounts (i.e., are used

to indicate the next number of occurances of some event).

63

4[1*)~

Mentor Alias
Segment Table1i

Mentor ~~ Alias a la
Semet, abeSegmen~t Table

I

LefLeaf Leaf
t eSement Segment Segment

Direct Pointer
Indirect Pointer.....I ~ ~~~Crea ted ----

I •egigure 11 ia Table ".,,reation.tTa e

1'4

~ KVIfq

2. Local Active Segment Table

The local Active Segment Table (see figure 12) is a

processor local data base. The LAST contaiins the

characteristics (viz., segment number, access) of each

locally active segment. An entry exists for each segment

that is active in a process "loaded" on this CPU and in

local memory. The first field of the LAST contains the

memory address of the segment. If the segment t. not in

memory, this field is use! to indicate whether the L_)ST

ertry is available or active. The Sepment No/Access field is

a combination of seement number and authorized a-.e!ss. It is

an array of records data structure that is indexed ty D -.

The first record element (viz.,most sirnifiCart bit) is usel

to indicate the access (read or read/write) Permitted to

that sei-rent. The second rerorl element (viz., the next

seven bits) is used to indicate the segment number. A null

A! sezment number indicates that the Dro-ess does not have the

se'ment active.

3. Alias Table

The alias table (see figure 13' is a memory manager

data base which is associated with each non lpaf segment in

the kernel. An aliasing scheme is used to prevent passinp

systemwide information (uniqu-_id.) out of the kernel.

i Segments can only be created throup a mentor seazrent and

65

Inde_#

Memory Segment_#/Access_Auth

Addr DB3 ODBR I DBR 2 DB 3 DBR 4 DER5,

Ell ,ii i

i

It Figure 12. Local Active Segmn~et Table.

66

" I'

,En try_#

U que.ID Size Class Page Table Alias Table
Location Location

II

Figure 13. Alias Table.

>4

1 6?

entry number into the mentor's alias table. When a segment

is created, an entry must be made in its mentor segmrent's

alias table. Thus the mentor segment must be known before

that segment can be created.

The alias table consists of a header and an array

structure of entries. The header has two tpointers" (vi?.,

disk addresses), one that links the alias table to its

associated serment and one that links the alias table to the

mentor segrant's alias table. The header is provided to

support the re-construction of the file system after a

system crash due to device 7.-0 errors. It is not used at all

durin, normal operations 1, ch entry in the array structure

consists of five fieldb for Identifying the created

sogments. The Unique_jd field contains tr:e unique

iduntification number for the SE.. 'nt. The Size field is

used to record the size of the segment. The Class field

contains the appropriate security access class of the

:4 s4;ment. The Page Table_.ocatior field has the disk aldress

of the paie table. A null entry indicates a zero-ler.npth

segirent. The Alias TaleLocation field has the disk address

of the alias table for the segment. A null entry# indicates

that the sepment is a lea? segment.

4. Memory anaeernent Unit Ira'e

The Memory Management Unit Inape (MMUIege) is a

processor local data base. It is an array structure that is

68

lot

irdexed by the DBR_ . Each MMUJIrage (see figure 14)

includes a software representation of the seurrent descriptor

registers (SDR) :or the hardware MMU [121. This is ir

exactly the format used by the special I/O instructions for

loading/unloading the MM7J hardware. The SDR contains the,

TaseAddress, limit and Attribute fields for each loaded

segment in the process' address sDace. The PaseAddress

field contains the base address of the se ments in memory

(local or ,lobal). The Limit field is the nurber of blocks

of conticuous storage for each segment (zero indicates one

block). The Attribute field contains eight flags. Five flags

are us d for protectLn? the segment against certain tVpes of

acess. two encode the type of accesses made to the segment

(read/write), and one indicates the special structure of the

segment fill. Five of the eight flags in the attribute fleld

are used by the memory nanaper. The system orly and

"execute only" flat-s are used to protect the code of the

S'ferrl fror mallicious or unintentional moeifications. The

read only" fla is used to control the read or write access

to a segment. The "ch6nge" flag is used to indicate that the

segment has been written into, and the "CU-inhibit" flap is

used to indicate that the segnent is not in rer:ory.

The last two fields of the MMUImag-e are the

?lock Used field and the Maximum Available .lccks field.

These two fields are used in the maneement of earh proc.ess"

,;, virtual core and are not associated with tne hardware MtVU.

69

I,€

DBR#

Blocks Used

Max Avail Blocks
o . ____ ___

Seement PaseAddr limit AttributesNo

1 1 one record / DBR#-

Figk\i'e 14. Memozy Management Unit Image

Ie

5. Memory Allocation/Deallocation Bit Mans

All of the memory allocation/deallocatior bit maDs

(see figurp 151 are basically the same structure. Secondary

storage, Plobal memory and local memory are managed ty

memory bit maps. The DiskBitMap is a global resource that

is protected from race conditions via the lockinr convention

for the GAT. "ach bit in the bit map is associated with a

block of secondary storage. A zero indicates a free block of

storagp whilp a one indicates an allocated block of storage.

The Global _memory_1itmap is used to manape global memory.

It is a shared resource that is protected from rare

conditions by the lorkinp, of the GAST. The

Local_MemoryBit_Map is tVp same structure as the

GlobaliemoryBit Map and is used to manaRe local metiory.

The LocalMemory_Pit .ap is not locked since it is not a

shared resource between memory manae-rs.

I. BASIC ?UNCTIONS

The detailed source code for t'e basi- functior.s and
main line of the memory mana'er are presented in appendices

A and P. Apoendix A lists the Droc-dures which are coded in

. PZ/.Yq. while Appendix I lists the lower level hardware
,'e

Ppendert procedures which are codpi in PIZ/ASM.

P1/YS is a high level modular structvred latruua.e

which oroeuces a machine-independent Z-code sirrilar to

11

i . <t

Memory Bit Map
222222222

Page 0 1 2 3 4 5 6 7 8 9 1 I. 2 1 4 4 4 5 5 5 5 5 5
1 2 3 4 789 0 2345

I '

I I

Figure 15. Memory Allocation/Deallocation Map.

72

PASCAL'S P-code. The translator from Z-^ode to Z-6000

machine code is currently under development at ZIOG Inc.,

thus the PIZ/STS module could not be compiled on the ZROO0

[13]. PLZ/AVM is a symbolic assembly lanrguage that is used

to program the Z-800e. The assembler supports Structured

programming and produces a relocatable Z-6000 object modtle.

In the discussion of the memory manager design, a

pseudo-code similar to PLZ/SYS is utilized. The rationale

for using this pseudo-code was to provide a summary of the

memory manager source code, and to facilitate the

4 presentation of this design.

It is assumed that the memory manaer is initialized

into the ready state at system generation (as previouslyr

mentioned). "When the memory manager is initially placed into

the runnin, state, it will block itself (via a call to the

kernel primitive Wait). Wait will return a message from a

signalling process. This message is interpreted ty the

memory manager to determine the requested function and its

1 required arguments. The function code is used to enter a

case statement, which directs the request to the appropriate

memory manager procedure.

When the requested action is completed, the memory

manager retvrns a success code (and any additional required

data) a the sisnallinR process via a call to the kernel

primitive Signal. This call will awaken the process which

requested the action to be taken, and place the returned

i73

L 7

messa, ge into that process" messagte queue. When that action

is completed, the memory manager will return to the top of

the looD structure and blork itself to wait for the the next

request. The main line pseudo-code of the memory manager

process is displayed it figure 16.

1. Create an Alias Table Entry

Create Entry is invoked when a user desires to

create a segment. A segment is created by allocating

secondary storage, and by making an entry (iniqueid,

secondary stora;.e location, size, classification) into it's

mentor se.ment's alias table. This implies that the mentor

segment must have an alias table associated with it, and

that the mentor segment must be active in order to obtain

the secondary storage location of the alias table.

The mentor segment can be in one of two states. It

,.4 may have children (viz., have an alias tablel, or it may be

a leaf segment (viz., not have an alias table). If the

mentor segment has children, it has an alias table and this

alias table can be read into core, secondary storage can be

allocated, and the data can be entered irto the alias table.

If the mentor seegment is a leaf, an alias table must te

created for that segment before it (the alias table) can be

K4 "read into core and data entered into it (see firure 11".

The pseudo-code for CREATE ENTRY PR'0CEIDURS is
"i'

presented in figure 17., The arguments passed to CreateEntry

74

, ' 7#I_

ENTRY
INITIALI ZE PROCESSOR LOCAL VARIABLES
DO

I CHECKIFMSGQUEUEEMPTY I
Vp ID, MSG := WAIT
FUNCTION, ARGJENTS := VALIDATE MSG (MSG)
IF FUNCTION

CASE CREATE ENTRY THEN
SUCCESSCOrE := CREATE ENTRY (ARGUMENTS)

CASE DELETE ENTRY THEN
SUCCESS UODE := DELETE-ENTRY (ARGUMENTS)

CASE ACTIVATE THEN
SUCCESS CODE := ACTIVATE (ARGUMENTS)

CAST DEACTIVATE THEN
SUCCESSCODE := DEACTIVATE (ARGUMENTS)

CASE SWAP IN THEN
SUCCESS CODE := SWA? IN (ARGUMENTS)

CASE SWAP_ UT THEN
SUCCESS CODE := SWlAP OUT (ARGUMENTS)

CASE DEACTIVATE ALL THEN
SUCCESSCODE-:= DEACTIVAT- ALL (APGUM-ENTS'

CASE MOVE TO GLOBAL THEN
SUCCESS COfE := MOVETO_GLOBAL (ARcUMEtTS)

CASF MOVE TOJlOCAL THEN
?UCCESS CODE := MOVETO LOCAL (ARGUMENTS)

CASE UPDATt THEN
STCC3SSCOrE := UP]ATE (ARGUIVENTS)

SIGNAL (VP ID, SUCCESS CODE, ARGUMENTS)
Cr

END MEMORYMANAGERPIZ/SYS MODULE

i. Figure 16. Memory manager Mainline Code.

75

Itd

v ;- ",, .. ,. r "L 7. ...

CREATE ENTRY PROCEDURE (PARINDEX WdORD, "ENT:"Y # WOR~,
SIZE WO~r, CLASS EYTE)

RET'JRNS (SUCCESS CODE BYTE)
LOCAL PIKS WORD, PAG? TABLE-LOC WIORD
ENTRY
IF ALIAS TABLE DOES NOT EXIST THEN

STTCCESS CODE := CREATE AJIAF TABLE
IF SUCCESS CODE 0 VAIID TITEN RETURN~
FT

El

SUCCESS-CODE := READ ALIAS TABLELS: ACLT CEK E (E
G AST(PAP.INrEX) .ALIAS-TABLEIOC)

IF SICCESS CODE Z> VALID THBN RETURN
TI
SUCCESS cors := chEcK-rUPENTRT I in alias table I
IF SUCCESS3CODE e> VALID THEN BETURN
TI
SUCCESS COrE, PAGE TABLF LOC := ALLOC SEC STORAGE (BINS)
I? !7JCESS...CODE 0 VALID THEN F-ETTF.N

TPATEAIASTAL(FNTRY#, SIZE, CLASS, PAGE TABLE b0C'
STJCCESS COLE := WRITEALIAS TABLE (

IF !TCE~ CDEG ASTTFARINDEiX] .AIIAS T'-AB-lE- 10C)
IF UCCSSCOD 0 VALID TEEN REFTURN

ELSE SUCCESS CODE :=SEG CREATE

IF

TND CRATE ENTRY

Yipure 1?. Create Entry Pseuio-code.

76

are the index into the GAST for the mentor segment, the

entry number into its alias table, the size of the segment

to be created, and the security access class of that

segment. The return parameter is a success code, which would

be "seg-created" for a successful segment creation.

When invoked, Create-Entry will determine which

state the mentor segment is in (viz., if it has an alias

table). If an alias table does not exist for the mentor

segment, one is created and the alias table of the mentor

segment's parent is updated. The alias table is read into

core and a duplicate entry check is made. It no duplicate

entry exists, the segment size is converted from bytes to

blocks, and the secondary storage is allocated, for non-zero

sized segirents. The appropriate data is entered into the

alias table and the alias table is then written back to

secondary storage.

2. Delete an Alias Table Entry

Delete-Entry is invoked when a user desires to

delete a segment. A segment is deleted by deallocatir.g

secondary storage, and by removing the appropriate entry

from the alias table of its mentor segment (the reverse

logic of Create_',ntry). This implies that the mentor segmentTi must be active at the time of deletion. There are three

conditions that can be encountered during the deletion of a

77

segment: the segment to be deleted may be an inactive leaf

segment, an active leaf segment, or a mentor segment.

If the segment to be deleted is an inactive leaf

segment (viz., has been swapped out of core, and does not

have an entry in the GAST), the secondary storage can be

deallocated and the entry deleted from the mentor segment's

alias table. If the sepment is an active leaf segment, the

segment must first be swapped out of core and deactivated

before it cau be deleted. This entails sirnalline the memory

j manager of each processor, in which the segment is active,

to swap out and deactivate the seRinent.

If the segment to be d,-Ieted is a mentor seirment, an

alias table exists for that si' ment . If the alias table is

empty, the secondary storage f'or the alias table and the

segment car be deallocated, and the entry for the deleted

sement can be removed from iti mentor's alias table. If the

alias table contains any entrits, the segment cannct be

deleted because these entries would be lost. If this

condition is encountered success code of

"leaf seRment-exists" is returned to the process which

requested to delete the entry. Due to a confinement problem

in "uperaded" segments, this Success code cannot always be

passed outside of the kernel. This implies that the segment.

[!lmanager must strictly prohibit deletion of a segment with an

access class not equal to that of the process.

' 1
kf 78

'a7M -

The pseudo-code for DFETEENTRYPRCCEUR_ is

presented in figure 16. The parameters that are passed to

this procedure are the parent's index into the G_A t and the

entry number into the parent's alias table of the segment to

b. deleted. The alias table-loc field is checked to

determine the state of the mentor sepment (either a leaf or

node), and the appropriate action is then taken. A success

code is returned to indicate the results of this procedure.

j 3. Activate a Segment

Activate is invoked when a user desires to make a

segment known by adding a segment to his address space. A

segment is activated by making an entry into the LAST for

that processor, and the GAST. The activated segment could

be in one of three states; it could have previously teen

activated by another process and have a current entry in

both the GAST and LAST, it could have previously been

activated !1y another process on a diff~rent processor and

1 have an e:ury in the GAST but not the I-AST, or it could be

1 inactive and have an entry in neither the G AST nor the

L AST.

If the se'ment to be activated already has entries

in both the L AST and G AST, these entries need only be

updated to indicate that another process has activated the

. segment. The segrent number is entered into the

Seement No/Access Auth field of the LAST, and if the

79

DELTEF~RY PROCSDURE P ARIDE WORflt ENTRY# WORr
RETURNS (SLUCCEM COrE BTT3)
LOCAI PAR INrFX 90RD

I Check if' the passe! mentor segment has an alias table.
IF G AST[PAPINrEX] .ALIASTABt!LOC </ NULL

'SUCCESS CODE :=READ ALIAS TABLE
GAST(PARINDEX) .AIIAS TABIE tOC)

ELS F
SUCCESS CODE :=NO CHILDTODELETE

Ft
IF SUCCPSS3CODE 0 VALID TEE-N RETURN
IF71hlde
Determine If segmert has children in alias talle I

!Search G AST with UJNIQU FID to verify segment Inactive I

IF ACTIVE IN IAST THEN
DEACTIVATfE ALL (G AST INDEX, L AST INDEX)

F'
!Check G)AST to verify serment Inactive in other L-AST's

IF ACTIVEINOTHERLAST TEEN
SIG;NAL-TO DEACTIVATFALL (GCASTJINM)

MESCSAE OFL1A5_&EAISF3TS

SJCCESS C'MD :- WRYIT)ALIAS -TABIB

IF SrTCCESS CODE VALIr TEEN
s JCC EsS coD~ r: SEG DELETED

'FI

END DEIET" FNTRT

Figure 1E. Delete Entry Pseudo-code.

segment is a leaf, its mentor's NoActiveDependents field

in the GAST is incremented. In this design, the GAST is

always searched to determine if the segment has been

previously activated by another process.

If the segment to be activated has an entry in the

GAST but not the LAST, an entry must be made in the LAST

and the GAST must be updated. The LAST is searched to

determine an available index. The segment number is entered

into the I_AST, and the index number is entered into the

GAST Processors-LASTE_# field. If the sepment to be

activated is a leaf segment, its mentor's

NoActive_Dependents field in the GAST is incremented.

If the -.ctivated segment does not have an entry in

either the.GAST or LAST, an entry must be made in both.

The GAST is searched to find an available index, and the

entry is made. The IAST is then searched to find an

available index, and the entry is made. The I_AST index is

then entered into the 0 AST Processors L ASTS # field. if

the activated segment is a leaf, the No-ActiveDependents

field of its mentor's GAST entry is incremented.

The pseudo-code for ACTIVATT PROCEDUFE is presented

in figure 19. The parameters that are passed are the DPR_#

of the signalling process, the mentor segment's index into

the GAST, the alias table entry number, and the segerpt

4 number of the activated segment. The mentor seement is

ii always checked to determine if it has an associated alias

i

tSi

ACTIVATE ?ROCF.DTTPE (rBR-# lYTE, PAR INDEX WiopL
ENTRY # WORD, SEMENT NO BYT11E)

PETUTRNS (SUCCESS CODE TYTE, RFTGASTH!NDLEx FANDLE,
CLASS BYTE, SIZE WORD)

IOCAL G.3NDEX iVORD, LINDEX WORD
ENTRY

I Verify that passed segment is a mentor segmient
IF G AST(PAR TNrEx) .ALIAS TABLE.LOC (0 e THEN

SUCCESS CODE :=READ ALIAS TABLE(
ELSE ._AST EPAk, INDEX] .ALIASTALE_..OC)

suTccEss-COnE: ALIAS DOES NOT EXIST
FI
IF SUCCESS COrE o VALID 'PEEN ?ETURN
F'

I Check G_&ST to determine if active
St'CCESSCODEtINDEX :- SEARCHOGASQT (UtLIQTU ID'
lI StCCESS CODE -FOUND THEN

E IF SEP1ENT IN I AST THEN
EIEUPDATEL1AET (SEGMENT NO)

MAKrLASTENTRY (DBE #, S3GMENTNO)
UPDATE G tST (L INDEXY
IF G AST1INDEX].ALIAS TABLFLOC = NUJLL TFTN

GI5AST (?AR_ JPEX] ..iODEPEN DENT S-ACTIVE

r.L SE

MEND-F (A Ii:i Ar:x. ENTRY#

I Fip'ure 19. Activate Pseudo-code.

I2

table. If it does not, the success code of
"alias-doesnotexist" is returned. If the alias table does

exist, it is read into core and the entr* number is used as

an index to obtain the activated segment's uniqueid. The

GAST is then searched to determine if the segment '

already been activated. If the unique_id is found, the GAST

is updated and the LAST is eit1er updated or an entry is

made (depending on whether an entry existed or not). If the

uniquejid of the segment was not found during the search of

the GST, an entry must be made in both the GA.ST and

LAST. Activate returns the activated sepment's

classification, size, and handle to the signalling pro.ess.

4. Deactivate a Segment

Deactivate is invoked when a user desires to remove

a segment from his address space. To deactivate a segment,

the memory manager either removes or updates an entry in

both the LAST and GAST. Deactivate uses the reverse logic

of activate. Once a segment is deactivated, it can only te
reactivated via its mentor's alias table as discussed in

activate. If a process requests to deactivate a sept.ezt

which has not been swapped out of the process' virtual core,

the memory manager swaps the segment out and updates the MMU

image before the segment is deactivated. The segment to be

deactivated could be in one of three states; more than onPe

process could concurrently hold the segment active In the

r 63

LAST, the segmert could be held active by one process in

the I-AST and more than one in the GAST, the segment could

be held active by only one process in both the LAST and the

GAST.

Deactivation of leaf segments and mentor segments

are handled differently. If the segment is a mentor segment

and has active dependents, it cannot be removed from the

G AST (even though no process currently has that segment

active). This is based on the desiRn decision which requires

that the mentor of all active leaf segments remain in the

GAST to allow access to its alias table. The mentor's alias

table must be accessible when an alias table is created for

a dependent leaf segment. If a leaf segment is deactivated,

the NoActiveDependents field of its mentor's GAST entry

is decremented. A mentor segment can only be removed from

the " AST if no process holds it active, and it has no

active dependents.

If more than one process concurrently hold a seimert

active in the I-AST, and one of them siznals to deactivate

that segment, the entry in the LAST is updated. This is

accomplished by nullin, out the SegmentNo/AccessAuth field

(: o of the I,_AST for the appropriate process. If required, the

No ActiveDependents field of its mentor serrent s 1? AST

entry is decremented.

) E4

If only one process holds the segment active in the

,_AST, and that Process signals to deactivate the sepment,

the LAST entry for that segment is removed. The

Processors_1_ASTE# is updated and checked to determine if

there are other connected processors. If there are no other

connected processors and the segment has no active

dependents, the segment is removed from the GAST. If there

are other connected processors, the GAST is updated. If the

deactivated segment is a leaf, the mentor segment's

NoActiveDependents field in the GAST is decremented.

The pseudo-code for DEACTI7ATE PROCEDURE is
presented in figure 2. The parameters tnat are passed to

the memory manager are the DBR_ of the signallinp prncess,

and the index into the GAST for the segment to be

deactivated. The procedure first updates the LAST, and then

removes the entry if no local process holds the segment

active. The GAST is then updated, and its mentor segment is

.4 checked (if the deactivated sement was a leaf', to

determine if it can be removed. If no processes currently
I

hold the segment active, and it has no active dependents,

the segment is removed from the G.A.£.

5. Swa a Segreat In

SWAP-IN is invoked when a user desires to swap a

4 segment into main memory (global or local) from secon'ary

storape. A seement is swapped into main I7emory by obtaininh

85
re!

DEACTIVATE PROCEDURE (DBR# BITE, PARINDEX WORD)
RETURNS (SUCCESS CODE BYTE)
LOCAL INDEX WORD
ENTRY

I Check if sement is in core I
IF G AST(INDEX].NO ACTIVE IN _MEMOPY 0 0 THEN

1 Check MMU imaze to determine if in local memory I
IF IN LOCAL tFORY THEN

SUCCESS CODE := OUT (DER_#, INDEX)FI

! Remove process sement no entry in L AST
L AST [L_INDEX] .SEGMENT NO/ACCESS AUTF.[DBR.#] kC [ECFIFACTIVE_IN_L_AST (L_AST_INrEX)IF NOT ACTIVE IN I AST THEN

L_AYT[._INEX. TEMORY(ADDR := AVAI.A7LE

I Check if deleted segment was a leaf !
IF G_ASTINDEXJ.GASTE_#_PAR 0 , THEN

G AST[PAR INLEX].NODFPENDENTS ACTIVF - I
I Determine if parent can be removed-!

CHECK FOR REMOVAL (PARINDEX)
TI
Determine if deactivated segment can be removed
CHECK FCR REMOVAL (INDEX)
SqTCCE S-, CODF = SEG_DACTIVATED

EN D DEACTIVKTE

ie
~Figur'e 2£. teactivate Pseudo-code.

{ 86

the secondary storage location of its page table from the

GAST, allocatin, the required amount of main memory, and

reading the segment into the allocated main memory. The

segment must be active before it can be swapped into core,

and the required main memory space must be available. Three

conditions can be encountered durinR the invocation of

S.APIN. The segment can already be located in global

memory, the segment can already be located in one or more

local memories, or the segment may only reside in secondary

storage.

If the seiment is not in local or global mefrory,

local memory is allocated, the segment is read into the

allocated memory, and the appropriate entries are made in

the MMTT imape, the LAST and the G_AST. If the segment is

already in iPlobal memory, it can be assumed that the segment

is shared and writable. In this case the only required

actions are to update the G AST and I.PST. The

NoActiveInMemory field of the CAST entry is incremented,

and the MMU imaee is updated to reflect the swapped in

segrment's core address and attributes.

If the segment already resides in one or more localI.
memories, it must be determined if the segment is "sharej"

and "writable". A segment is "shared" if it exists in ,ore

than one local memory. A segment is "writable" if one

, * process has write access to that segment. If. the segment is

not shared or not writatle and. in local menory, the

I 7

appropriate entries are updated in the MMU image, the IAST,

and the GAST. If the segment does not reside in local

memory, the required amount of local memory is allocated,

the segment is read into the allocated memory, and the

appropriate entries are made in the MMU image, the L_AST,

and the GAST.

If the segment is shared, writable, and in local

memory, the segment must be moved to global memory. If the

segment is not in the memory manager's local memory, it

signals another memory manager to move the segment to Plobal

memory. After the seirment is moved to global memory, the

memory manaer signals all of the connected memory manager's

to update their L_AST and MMT' data bases. When all local

data bases are current, the memory manager updates the GAST

and returns a success code of segactivated.

The pseuio-code for S'A?IN PROCEDURS is presented

in figure 21. The arguments passed to SWAP IN are the

!'.1 _ASTINDE.X of the seprent to be moved in, the process'

I R_, and the access authorized. SWAP-IN will convert the

segment size from bytes to blocks, and verify that the

process' core will not be exceeded. If the virtual core will

be exceeded, a success code of "corespace exceeded" will be

ireturned. If write access is permitted, the writable tit is

set. Checks are then performed to determine the seprent's

A N storage location (local or glotal), and the appropriate

action is taken.

]ra

SWAP IN PROCEDURE (INDEX WORD, DER # B7TE,
kCCESS AUTH BYTE)

RETURNS (StCCESS-CODE BYTE)
LOCAL L INDEX W~ORD, BLKS, qORD
ENTRYF. ES := CA1C',7LATENO._OP ELKS (GAST[INDBX] .SIZE)
SUCCESS CODE := CFFCK MAX LINEAR-CORE (BLKS)
IF SUCCESS COrE =VINTUAI-LINEAP-CORE FULL TEEN

RESTUR N
Pl
G AST[INrFXJ.NO .SEGMENTS IN MEMORY += 1
IT ACCESS AUTH = WRITE THEN

G AST(INDEX) .FLAG BITS := WRITABLE BIT SEIT
El

Determine if segment can be put in local mer'vryI
IF GAST (INDEX) F1-AG BITS AND WPITADLE "ASK=e
ORIF GAST[INDEX.NACIVE_IN MEMORT <= I THEN

Determine if already in local memory
CHECK LOCAI MVMORY (L AST INDEX)
IF N6TINLOCALMFMOKY TEEN

AILOCATELOCAL MEMORY (BLKS)
READ SEGMENT TPAGE TALE LOC, 1ASFADPR)
I ASY(I INrFY] '= BASF ADYR

ELS
IF NOTINGT.OBALMEMOR1 THEN

UPDATE VNU
UPDATE I.AST
RETURN

ALLOCATE GLOBAL MEM1ORY (ELKS)
IF IN OCAL MEMCRY TFEN

"OVE TO GLF4BAL1 (L-INDEX, Bk EADDH, SIZE)

END SWCESCP-:-:ANEDI

Fi~ure 21. SwaD In Pseudo-code.

ti69

k

6. Swap a Segment Out

SWAP-OUT is invoked when a user desires to move a

segment out of core. A segment is swapped out of core by

ottaining its secondary storage location, writing the

segment to that location (if required), and deallocating the

main memory used. The decision to write the segment is

ietermined by the GAST written bit. This bit is set

whenever the se-ment has been modified. The segment to be

swapped out car be in one of two states: the segment can 1e

in local memory, or the segment can be in global memory.

If on~e process has the segmert in local memory and

the written bit Is set, the sei 'ent is written into

se.-ondary storape and the local memory is deallocated. If

the written bit is uot set, the local memory need oniy be

deallocated. If more than one process has the segment in the

same mocal memory, the serment remains in core. The

I eappropriate M" image is updated to reflect the seppients

deletion and the GAST NoActiveIn-Memcry figld is

"I decremented.

ell All segmer.ts in global riemory are shared and

writable. If a process requests the se&,ment to be swapped

out, the segment remains in memory. The MMU image is updated

to reflect the seement's deletion, and the GAST

: J No ActiveInMemory field is decremented. If the

51. No Active In avemory indicates that one oroces! has the

!9

"LL

segment in core, its memory manager is signalled to move the

segment to local memory.

The pseudo-code for SW(AP-OUT PROCEDURE is presented

in figure 22. The arguments passed to SWAPOUT are the DBP_#

of the si~nallinp process, and the G_ASTINtV of the

segrent to be removed. The return parameter is a success

code. $'APOUT removes the sepi rent from the process's

virtual core, deletes the segment from its MMU image, and

decrements the NoActiveIn_emory field. If the seRment .an

be removed from memory, it is detrmined which memory can be

deallocated. If the sepment has been modified, it is uritten

back to secondary storage and the appropriate memory

deallocated. If the sepment has not been modified, the

appropriate memory is deallocated. If afte.- the deletior one

process has the segment in 4lobal remory, its memory manager

need only be signalled to move the segment to local memory.

Then SWAP OUT successfully Completes, it returns a suz.cess

code of "swapped out".

7. Deactivate All Segments

DEACTIVATeALL is invoked when it becomes necessary

to rerove a segment from every process' address space. Each

process is checked to determine if the segment is active. If

a process has the segment active, it is deactivated from its

address space. The pFeudo code for Deactivateall is

il]ist.ited in figure 23. The parameters passed to

.1 91

SWAP OTTT PROCEDUJRE (DER 4 BYTE, INDEX WORD)
RETURNS (SUCCESS COpE BYTE)
ENTRY
BD FS := G AST[INDEX).SIZE / BLK SIZE
FREE PROCISS LINEARCORE (BLKS)-
DELFTF MMtT EiTRY (rPE_#, SEG_#)
G AST[INDEX).NO SEGMENTS IN "'MORY -

Ditermine if seiment has beer written into
IF M'U It-A0ErD2R_#] .SDF.SvG..#J .ATTRIBjUTVS='iFITT3N TFRN

1If' segm'ent has been written into, update G-ASI I
G_)STtIND1EX] .FLAG BITS := WYRITTEN

F'
I Determine if' segment is in global memory

IF GAST(INDX].GIOBAL ADDR 0> MULL. THEN4 F GAST[INDFX].Nb SEGMFNTSINMEMORY P
4ANDIF G AST(INDEX] FTAGDBITS = WRITTEN TFEN
r4WRITYESSG (PAGE TABLELOC, MEMORY IDDR)

EIEFR7!LOCALBITPAP (MEMc0FYAI'R,BLKS)
IF GAST[INDEXJ .NOACTIVE IN MEMORY v~THEN

-1FREEIOCALBITMAP (MfMOTADR,!LKS)

ELSE !It not in Plobal memory
IF G kST(INDEX] .NO -ACTIVEINEMOPY =e
ANDIF a AST(IND.EK).FLAGPITS = WRITT-7N TEEN

'iPITF SEG (PAGETABLELOC, GLOBAL ADP
FREE GLOBAL -BITMA? (GLOBALADDR, BLKS)

IF GASTINDFX.O_.ACTIVE IN M1EMORY = TF2N
FREE GIOBAIBITMAP (LISALADDR, BIKS)

Fl

SUICCESS CODE :=SwAPPEr OUT4END SWAP-OUT

Figure 22. SwapOut Pseudo-?ode.

92

DEACTIVATE AIL PROCEDURE (INDEX ;ORD, LINDEX '4O1RD)
RETTRN. (SUCCESS COME IYTE)
ENTRTLOCAL I MLE

I :. eDO
IF I a MAX _ :BR _ T HE N

TX IT4- 0 ZTFO TEEN -

SUCCESS CODE := MECTIVATS (It INDEY)
IF SC3SSCODE < SEGDEACTIVATED TEN

R ETUR.N
FI

I += 1
OD
SUCCESS CODE := VALID

FND DEACTIVATF ALL

Figure 23. Deactivate All Pseudo-code.

93

Deactivate-all are the deactivated segment's GAST index and

the LAST index. The I-AST is searched by DBR_# to determine

which process has the seement active. If the check reveals

that the segment is active, it is deactivated by callinp

Deactivate. If the segment was successfully deactivated from

all processes, a success code of valid is returned.

8. Move a Segment to Global Memory

MOVYTOGLOBAI. is invoked when it tecomes neceslaiy

to move a segment from local to global memory. If a segment

resides in one or more local memories, and a process with

write access swaps that segment into core, or if a segment

resides in in local memory (with write access) and another

process with read access requests the segment swapped in,

the segment is moved from a local to global memory to avoid

a secondary storage access. if the segment resides in the

running" memory manager's local memory, it will affect the

A segment transfer, otherwise it will signal another remory

.Janager of a connected Drocessor to affect the transfer.

Fi .urp 24 illstrates the pseudo-code for OVE TO OZO AL.

Once the segrment has been moved to global memory, the

(,I signalled memory manager will update the MMJ images for all

connected processes, and deallocate the freed local menory.

A success code of completed will be returned to the

Y ' si.nallinp memory manaer. The parameters passed to t.'e

memory manager are the seement's I AST index the -lobal

94

I, Yi:

MOV-TOGIOAL ROCENRE (I. INDEX .Or], GLOBAL)ADDP WqORD,
SfZE WOPP)

RETURN' (SUCCESS-CODE BYTE)
rNTRY

IMtove se-&ment from local memory to Plobal mremoryI
DO tMFJMVT !MOVE (MEMORY ADDR, GLOBAL. ADDR)
L_1STrIND'-XJ .M'E-MORT ADDR := AVAILABLE
Update the MM11 irnage to reflect new address
DO p0p ALL DBR 'S

IF L XsTI NDX].SEG'MNT NO/ACC 3SS AUTR 0> e kNtiF
Mrou IMAr.E (DB'#] .SDB (SEG) ;]ATTRI1TJTP1,=N-1OCAL TEEN

MMUIM~AGE(DfR# .SDR[S!G #].BASE-ADD?:=OLOEA ALDDB

SUCCESS CODE := VALID
7-ND MOVF TO GLOBAL

Fi~ure 24. Move To Global Pseudo-code.

memory address of the move, and the size of the segment.

1 This information is passed because the GAST is locked

during this request.

9. Move a Segment to Local Memory

MOVETO LOCAI is Invoked when it becomes necessary

to move a Segment from global to local memory. This occurs

when one of two processes which hold a segment in global

memory swaps the segment out. The segment is moved from

global memory to the local memory of the remaininp process.

Figure 25 illustrates the pseudo-code .or MOVEJTOLOCAL. The

parameters passed to the memory manager are the segment's

LAST index, the global address of the seement, and the size

of the :egment. The return parameter is a success code. The

MMU imaRes of the signalled process are updated aft,' the

move has been made, and the #;lobal memory is deallocated.

Q le. Update the MMU Image

UTPDAT? is invoked followinr a MOVE TO GLOBAL

operation. After a segment has been moved from local memory

to global memory, it is necessary to signal the memory

managers of all connected processors to update their MMU

Iages and L AST with the current loca~lon of the segment.

They rust also deallocate the moved segment's local remory.

Figure 26 illustrates the pseudo-code of UPDATE. The

parameters passed to the memory menager are the segment's

96

MOVE.T..LOCAL FROCEDURT (L INDEX WORD9 GI.OPAL..AD IORDt

Rn2TTRNS (SUCCESS-.CODE BTT3)
ENJTRT
?LKS :m. SIZE / ELK .SIZE ~tS

BAS ADRES o AlfOATELOCAL MORY MS

IMove fromr~ gobal to local memory !
mEMORY VOIVE (GLO1At ArDRh, IASE ADtDRESSt SIM~

I LST~tJINDEX] .MEMORTjADLR :r9SEDRS

DO FOR ALL..DBR'S
j ~ ~ ~ 1 1! AFT(I 1NrEX1 .SBGMFNT.NO/ACCESS AIITE 0 q' W4IT

toMU I;AKQ.,DR oilSDR[SEG_#j ATTRI0T-S=IN LOCAL TEEN

MR - MArj fDDR#] ,SDR(S!G%'#J .BASEADDR:sal)SEADDRFSS

OD
SUCCESS CODE := VALID

'END MC'VTbjOCAL

Fieure 25. Move To Local Pseudo-code.

97

6I

I SIZE WORD)

RETURNS (StICC35S CODE BYTF)

DO FLORALL BTMP(M'OTDDL
IFt AST (JNEX INMEMORTAEDR : NOACESSAT
!-T S IPCCESSf CODEPSE 4:=TIBTSI VALIDTFE

PmD UUIPDATR_]SDEG#]BSEAD

GLBIAZ
I Ai

'OD

I I~ LIfX EMR_ R ATV
Fi&?ure 2e. Update Pseudo-code.

98

LAST index, the new plobal address for the segment, and the

size cf the segment. The return parameter is a success code.

. SUMMARY

In this chapter the detailed design of the memory

manager process has been prese,-,,iA. The purpose of the

memory manager was outlined, followed by a detailed

discussion of the memory manager's. data bases. The design

presented has identified ten basic functions for the memory

manaker. The implementation details of these functions are

pre- ;nted in Appendix A. The success codes returned by the

memory manaper are presented in figure 27.

This design has assumed that the kernel level

inter-process synchronization prinitives will be Saltzer's

signal and wait primitives(15]. This fact dominated the

design decision to lock the G-AST in the user's ,.rcess

before it signals the memory manager. In a mul 1-processor

environment, the pcssibility of a deadly embrace exists it

the memory manager processes lock the GAST. Should follow

cr work implement eventcounts and sequencers .s kernel level

synchronization primitives, the locking of the G -_S'7 rad

remory manager synchronization will need to le rpaddressed.

4 99

SYSTEM WIDE KERNEL LOCAL

I NVA ID LEAF SECMENTEXISTS
SWkPPED_ N NOLAT.EX IS TS
SWAPPED OUT ALIAS DOES NOT EXIST
SEG -ACTTVATED NOCETLDT5_DELETE
SEG-DEACTIVATED GASTJULL
SEG-CREATED L AST FULL
SEGC LETED LbCAL-MEMORY._FULL

VIRTUAL COPE 71ILL GLOBAL MEMORY FULLit I DUPLICATE ENTRT SECONDRY_SSORAGEPULI
f READERROR

'iPITE ERROP
DPIVE-NOT.YEADT

MEMORY MANAGER LOCAL

VALID
INVALID
FOUND
NOTJOUND
IN LOCAL MEMORY
NOT IN LOCAI MEMORY

! + DISK EPRORS

iti

iRure 27. Success Codes

100
/ 4..

IV. STATUS OF RESEARCF

A. CONCLUSIONS

The memory manager desi'n utilized state of the art

software techniques and hardware devices. The design was

developed based upon ZILOG'S Ze1 sixteen tit segmented

microprocessor used iv, conjunction with the Z8ECI Memory

Management Unit(12]. A microprocessor which supports

segmentation is required to provide access control of the

stored data. The actual implementation of the selected

thread was conducted upon the 2802 non-segmented

microprccessor without the Z~e1O MU.

While information security requires that the

microprocessor support segmentation, the iremory manager was

developed to be configuration inuependent. The desipn will

. support a multi-processor environment, ,'d can be easily

implemented upon any microprocessor or secondary storape
device. The loop free moaular desii.n facilitates any

required expansion or modif'.cation.

Global bus contention is minimized by the iremoryK ' manaper. Serments are stored in global memory only if they

are shared and writable. Secondary storise is accessed only

if the segment does not currently reside in plobal memory or

- some local memory. The controlled sharing of segments

•101

optimizes main memory usage*

The storage of the alias tables in secondary storage

supports the recreation of user file hierarchies following a

system crash. The aliasing scheme used to address segments

supports system security by not allowing the segment's

memory location or unique identification to leave the memory

manager.

The desian of the distributed kernel was clarified by

assipninp the MMU image management to the memory mana-er,

The transfer of responsibility for memory allocation and

deallocation from the supervisor to the memory manager

provides support for dynamic memory management.

In conclusion, the memory manaper process will securely

manage segments in a trulti-processor environment. The

process is effi=ent, and is configuration independent. The

primitives provided by the memory manager will support the

construction of any desired supervisor/user proress built'ii

upon the kernel.

iI -
B. FOILOW ON WORK

There are several possible areas in the SASS design that

can be looked into for continued research. The complete

implementation of the memory manaeer desig'n (refine and

oDtimize the current .IZ/SYS code) is one possibility. Other

possibilities include the implementation of dynanic memory

L i "102

management, and modifying the interface of the memory

manager with the distributed kernel using eventcounts and

sequencers for inter-process communication.

Tie implementation of the supervisor has not been

addressed to date. Areas of research include the

implmentation of the file manager and input/output

processes, and the complete desipn and implementation of the

user-host protocols. The implementation of the gatekeeper,

and system initialization are other possible research areas.

DynamiL process creation and deletion, and the introduction

of rulti-level hosts could also prove interestine.

3# 10

"%~ I

I

.I

l-*Ij

APPENDIX A. - PIZ/SYS SOURCE LISTINGS

MEMOFY..MANAGF._PT.Z_.SYSl mODULE

~~ VET.S. I..0 *

CONSTANT AS0

AVI&ILABLE e IAST ENTRY AVAIL.I

ACTIVE 1= I. AST ENTPY kCTIVE

ZEFRO 0
NULL := eeee

Null-PYAGE :

Ii SUCCESS CODES I
I4VAlIDe
VAL ID :s1

NOTFCTN f 3
SWAPPEDIN :=
S'gA~PED CUT :~5
SEG -ACT!VAT3D :=6

SEG DHACTIVATED :~7
SEG"CREATEr
SF.G D!L?,ETFr 9
LEAk SEG~tNT F.XISTS :=10

NO LfA EXISTS :s12

G TST F71.LL 1IL AST Full 1
I RLO~A M EO R :~14

NOWT IN LOCAL MEImopy : 15
LCAL FvoOpYFLL 16

GIOTAL MEMORY FULL 17

VIp IT!1Af COE1L :=-r IIe
DU.PTICATE ENTRY : 19
NOCFILDTC DrEIET' :' 20

TPIL'~rASYrS
READ tA.11SE t %2) 11111110
#RITKE %(0V:9F

CHLNGD-V.A T:= ooov

IN MEMORY VASK :y= o ,F

.1 ~C!EAFr!E: CLEAR AI IUTTES

R EA D

G '.ST FLAG BITS MASKS
WRITABLE MASK:)e~Q

* ~~~~WRITTTNMASK : ()'e1e

I DESIGN PARAMETM~S
BySIZE 2r.2E6
APAGE SVIZE :~BLK .SIZ3 2

MAX MSG SIZE :=16
C.)1m mSIE? ? I SIZEOF IGLOBA. MEM

?f VSZOF LOCA. MEMOBY!.~ SIZESI r
N6 OF PROCPSSORS I~

I 'A X NUMBER OF DBR #'S
Y'A7-rPR-No :

!MAX! ENTRIES I N G AST1G-AST LIMIT := 1?o
I MAY FNIRIES IN I AST4! AST LIMIT : 7
! SIZE OF ALIAS TABLE

rA7-NTP.Y-NO :=32
! OF SEGMENTS PEP. PROCESS

NO sic DESC-REG :~64
FIRST POSS -FPET-ELOCK I

I P'POC2SSOR LOCA1 DATA II PROC" SSORJID 0~~

TY?F ADR?FS woRr

ALIAS HEADER FECORDE Sf-G PAGEF TASLE LOC WORD

AlI AS FP3COPD r. UWi~iol ID r- ONG wcpr
I SIZE - WORD

CLASS dD
?AGF TABl'-LE ;cpr

~i IAtIAS TABLE -LOC *doL
SEC D7ESC REG RECORD BAS- ADDR ADDRESS

LIMIT BY"TE
~; 4jATTRIBUTES BYTE

W ~~ RECORD SDR ARRAY[NO0 SECP DES C f-G4

B I KS -'S D -o
MAX P7KS WORD =????)

"AS? .REC FSCOPD r:UNIQIIE ID1 1ONG WORD
-GLOBAL kDDP A D DFS S

DRICSSORS LASTT!NO ARRAY

k 19

[NO 0' PRocT-sORS WcRr)j
'IAG 3-ITS BYTE
GASTE NO FAR WORD

N6-A CTI VINMEVOPY iC?r
NO ACTIVFEflu'PEN4tENTS WO?D

PAG. TABLE-LOCI WoF~t
4AIAS TABIEtOCI 'WORD

SECIUENCER '. 0RD
INSTANCE1 wOpt
INSTANCE2 WOR10D3

1-AsT:R~C RECORD CMEMORY ADPR ArDnEss
SFGVNT NOAC C ES SA'T

E AN P.1. RvCORD (U NI C U D2 LONG WORD

* VAP!ABIS tECLAPATIONS

[j SSCTION G DATAA
0 I GIPAL G AST ARRAY rG ASTr LTMTT G AST EEsC]

tST TION I rkTA

MMU-TIMAGE ARRAY (MAX EUR NO i-M!1)j

AI I. ST AFFFAY (I Ai-T 17PIT I~RC
AIIAS TABIF nzco'r F-kDER AI:AS EEAPER

ITAS 3NTP.Y A'.RAY
[AX !T.Y NO AlIAS I

lOCAl NMEr, SIT PAP 0A.'..A? VESIZE/16 WOzDI
!DIST BIT P.fUF! ARRAY C???9? BYT3)

?Ar.RTA~fLB T fTFFER ARPAY (ILKSI ZF IYT"F)

' IV

1?6

7TRN)I

SThe following procelures are coded in ?LZ/&SM and aref * contained in a separate PLZ/ASM rodule.*

RFAt PAGES PROMC77TRE (DISK bOC WORD . Mrt-ORY-ArrE ADrEESSN
RETUJRNS (SUJCCESS COt BYTE

RrAr SF.GMFNT PROCEDURE (PAGETABLE LOC WORD , MEMORY ADDR

~: ETMJNS (S'TCCESS CODE BTE)I

'fRITT PAGT PROCEDUI2 (DISKILOC 4*iOL , FROMAD'R AD r-RE S S
PRiT'J?.NS (FTCCESS CODE BYTE)

4IT3 SEGmENT PROCEDURE (PAGETABLE -OC WORD , ~omArDR

RETiRvNS (SUCCESS CODE BYTE A6rEFI

R"?AD DISK PIT MAP ?ROCEDURE,
MUMPN' (stTccEsSccoD BYTT

VR1TF DISK -BIT Vk? PPOCEDURZ
RETUJRNS T SUCCEss CODE BYTE)

QTA?CF LIFF TIT TmAP PROCEDURE (STk?TRCFLOC WOPn)
RI!ffiUvN§ (S'CCESS CODE, BYTE, 1I.KOC woRD

ciiARP isK FIT MAP MMMCF (. 11 PLtOC liOpr

A.E.EGIOBAI --I" MAP ?'roCEDuR (ADr? ADDRESS, 31ES WORD)

1 PEL. OCAI-BITMAP PROCEDrn (ADtP ADDrESS, PIb'S WOE!)

ATI.OC TOCAL mEMOPY PROCrDURE (BUKS WORD)
RETRN TS!CC5SC~! YTE- , BA.S,-E PD A'ZDRESS

IAL10C GLOBAL mEVMORY PROCEDUE (BUES WORD)
RETUTRNS (S7CCESS CODE BYTE, BAST. ADDR ATDY-SS)

aFT IN~IO ID PPOCEDUPF
PETFTRN! (ID IONG WO'RD, SUCC?1SSCOD30 BYTE)

MEMORY MOV"! PROCFDURE (TO ADDRESS, FIROM ADDRESS, SIZT WORP%

VALIDrATT VFG PROCEBTIPF (MSG ARRAY (4AX MSG SIZE BYTE]
RTTURNS (FUNCTION PYTE, ARGUJMENTS ARiAY [OD

ii 1 e7

VALIDATE WqAIT MSG FROCEN'RE eMSG ARRAY [MAX-MSI SIZE ;TTEJ)
RrTTJ.q (FTYCCESS PYTE)

INTERNAL

'~The READ.ALA33ABE Procedure is called from the
* Createentry procedure and Delete~entry procedure. *
* T: e Droceiure will read the requested alias table

frtorr secondary storape to main remory.

RZAL ALIAS TAPIE PRocEDuR (ALIAS DIS KIOC WORD,

MIMJRS (SJC CES S -CODE 3T 3) M -11 TAMt ADEP.EsSI ENTRY
S'TCC!S CODT! :=7FABPAGY(ALIASrIKOC MrMRtM

FIND R DAi1 ABLE-IKOC -MRYA:.

2~The WRIT? AIlAS TAZZ rrocedure is called from the
* Createentr'y and relete~entry proce~Ures. T11e pro- *

* ceeure wdill write the appropriate alias table :'rom
T na5n mriory to secondary storage.

WPITT AIIAS TABLE PROCEDURE (ALIAS DISK 110C '1RD
F . .o.--Y At r r F kru

RTT'JPkIS (S'JCCESS CO!)E BTTZ
;1NT iY
F-c"UEs corD' := WITF PAGE.(A1IAS DISKLOC, MYF1ORY ADD?.)

ills

* The SEARC, ALIAS TPBILE Frocedure is called fror the
* Create alias-table procedure. The procedure will step

l through the alias table until it matches the passed
*' unique id with a table entry, or the table has teen
* exhausted. The procedure returns a success code of
~ either found or not found, and the appropriate index *
* into the alias table.

STARCE ALIAS TABIE PROCEDURE (UNIQUE ID LONG WORr)
P!IJTNS - (SUCCESS CODE BYTE, INDZX BvTE)

ENTRY
INDEX :- £

SUCCESS CODE := NOT FOUND
DO

IF INDEX > 'AXENTRYNO THIN SXIT

IF
SUCCESS CODE

:= FOUND

EXIT
FI
:NDSX I.OD

rND SFAPCPAlIASTAB1F

-, ~The UPDATEr.yUIAGE Procedure is called from the In
" procedure. The procedure wvll update the MrVJ image of
" the appropriate process with the iemory locition,
, limit, and access author!zatlin for the passed serment '

,,niumbe r.

' AT7- MMU IMAGE PROCEDURE (DER NO TTE, SEGMENT NO IYTF,
-y- ADDR ADDRESS, ACCESS BYTE, hIVIT ByT!)

LOCAL ATTR BYTE
' * FNTYMMU IMAGE[D?' NO] FDR[SEGMENT NO] .BASEADD := ADD3

MMU-IMP"ErDBR-NO) SDR(SEGENT-NO] .LIMIT := L!MIT
*. ATT := my" IFAGE[DB. NO] SDRTSFGt- NT_,NOj ,AT .RIIUT'S

A' CISJA' C R .RVIOqJS ACCESS
I? ACCESS = .AD ORIE ACCESS = WRITE THEN

ATTF := ATT, AND (2)111111!e

10

ELE IEXE~CUTE ONLY ACCESS
ATTR := TTR AND *%(2)11t1J~1t1

MIT IMAGE rrBli O]SDR [SEGMENT NO) .ATTR IBTTTFS :
ATTR 0P ACCESS

END UPDATE -mmU IMAGE

i ~' The DElETEn PIU ENTRY Procedure is called from the out
* Proredure.7The-procedure will nul out the mMU! image
Sof the appropriate process for the p'-ssed segrrert

* number.

r"I11TE MmIT rNTPY PROCEDURE (DBR NO BYTEA, SEGMENT NO IYTE '

M MU TmAGrrDB R-NO].SDR (SEGY,-NTNO) .E~PSADDR := NULL
V.Mt! IMAGE DPRNO] .SDR[SFGYYNT NO).II =ZF

.UT In~aC rif mO] .SrR SEGMENT NO] .ATTRIPUTES :=CLEAFED
NDDLTEm mMU ENTRY

T OCD INDE WOR

ThCe F~rSCO :=NrAR IST0A TAProeueI aldf

FI NDE :=C ST RT TROCS REE BLKSW

IOI AI INDE W?

Z: 4 SU~1,CCESS CODE : rE)INDX := S A IKBT A DX

LFS7 SmOD >VLDTT

IF SUCCESS _CO3 0 VALID THEN
ro

CLEARDIK_BITMAP (TA!4LE(I])
IF I F THEN EXIT
F'
I --- 1

OD
SUCCES_COTF := SEC STOR_.FULL
RETURN

FT
TASTE [I] := INDEX
I *.6=I1
IF I = BLKS TEN EXIT
FI

or
SUCCE'SS CODT := VALID

?ND FIND 3EC STOPAGE

* The AIIOCON _PAGE Procedure is called f'om the Create *

* alias table procedure. 1he procedure will fird one
pare of secondary storage for the creation of an alias *

* table. This procedure will return a success code of
* either vali or invalid.

AILOC ONT PAGF FROCFt'URE
'R tT u f , SUCCESS COTE BYTE, PAGF LOCk.TIOM WOP.r)
LOCAL TABLE ARRAYTTLKSIZE WORD]

.:SUCCESS CODE, TkBLE := FIND_SEC STOFAGTE 1)17I STTMCSS CO.F <> VALID TFEN

FI
FAGE LOCATION:= TABIEL2]

FND AILOC ONE PAGE

:

- 1i1

* The A!IOC SEC STORAGE Procedure is called from the
* Create ertry procedure. The procedure will create a
* pare table from the allocated secondary storae, and
~ write this pate to secondary storape. This procedure),

', will return a success code of valid or invalid.

At.LOC SEC STORAG-t FROCeDURE (BLKS WORD I
RETURNS (PAGE TABIE LOC WOR.D, SUCCESSCODE BYTE)
LOCAL TABlIE ARRAY TBLK_SIZE WORD]

S!ICCESS COCE, TALIE := FIND SECSTOAGE (BLKQ 1
IF S7CCf!SSCODE < VALID THEN

I -

DO
PAER .TALE [UFFER IiGI; TI T ME EXIT

I +=1
or
DO

TY T = MAXPAGE-SIZE TF-EN

IT

PA.G7 TABItUF E [I-l] NUvl pAG2
I +-=

SUCCESS CoE := W.ITE PACE (?AG TABLE LOC,
#PAGE TABLE IUFFER '

IND A1IJ)CjrEC ST'RA%'E

, * The CREATE, ALIAS TABLE Procedure is called by the

* Create entry procedure. The procedure will allocate
V" *- secondary storage for the creation of an alias table

- and update the nertor segment's alias table to reflect
* the created alias table's secondary storage location.
. The procedure returns a success code of either valid

' '. or inv lid.

*1 1

"F 112
.4.

/
i"°

CREATE ALIAS TABLE PROCEDURE (PAR INDEX WORD)
R1ErFNF SUJCCESS CODE BYTE
IOCAL PARENT BYTE

ALIAS TABLE LOC WORD
ENTPY-NC tLYTT!

ENTRY
SUCCESS CODF , ALIAS TABLE LOC := ALLOC ONE FAG!
PAENT G GAS TA (PP.NZY7].GAS IOA

V SUCCSS CI~DE := EAD ALIAS TKBLE(G AST[PAPEINT).
ALIAS TAIL3 LOC1, 4-ALIAS TABLE)

IF qT!CCESq COIDE 0 VALIr TFFN

2j SUCCESS CODE, ENTRY NO := SEARCH ALIAS TABLE(
GA,,TPAR fNDE72 TJNIQT7Irl

IF StCCESS COD'? = NOT fOUND T FE N

ALTh'S-TABLE.ALIAS !-NTRY[ENTRY _NO) .ALIAS TABF OC

C. AST(PAR INDEX) .ALIAS -TABLF LOC1 :=A1IAFTAfLF_1CC
SUCCESS O~DE := WRITE ALIAS TAI.E ALIAS TAHBL!LOC.

-.ND V~!aTr AIIAS TABLE

~' The CF~rT MAX VIRTUAL CORE Procedure is called
* by the In procedure. The procedure will verif~y that *
V~ t al!dition of the segmnent reqvested to be swapped in*

Swill not cause the process' allecated virtual ocriz tcA ~' te exceeded. If' the'virtual core is not exceeded, a
S success code of' valid is returned, otn'erwise a success~
~ code of no eory is returned.

CFTCK MAX VIRTUAI CO?2 PROCT-1URF DILR NO EYTI,
PIK NO REC WO0RZ

RFTURNS CSUCCESS-CODE BTE

4l' I'A2 [DR O4) LKSUS !D = NO -FE

St'CCESS :=zz VIRTUAI COR7 FULI
rLS?

A.

!TTCCSS CO' := VALID

FI
7 C

The FFEF _PROCISSVIRTUALCORE Procedure is called from *
* the Out procedure. The procedure will subtract the
~ size of the segment which has been swapped out fror
*, the virtual linear core allocated to that process.

FMEE PPOCFS VIRTUAL CCRT PROCEDURE (PKNO WORE
ENTRY
'MU A I~mA' r D NO].LKS USED -= BLT NO

'N' F_ P? OCESVIOR

The FREvE $.C0)DARYSTORAGE Procedure is called from
~ the Dplete_seg procedure. The procedure will read the
* pape table of the semment to be deleted and the
* secondary storape bit map into main memory. The bit
, rrao will be cleare. to reflect the deallocation of
* secondary storaze, and the Pape table lo-!ation will be '
* cleared. The procedure returns a success code of
* valid (,r invalid.

FRE3 SEC STCRAE PROCEDURE (PA, F. TABrLF LOC ",OF.'
P.ETU.NS (2UCCrSS COE TYTE -
lOCAL I WORD

TPBL-E1 ARRAT [?IK SIZE WORt]
YNTRY

SUCCSS COD~E := READ PAGr (-kGFTA3IE_!OC, T3E)
IF SUCCESS CODE e> 7ALID THEN

RETURN

SUCCESS CODE := R7AD -IEK BIT IAP
IF STCCFSS CODF 0> VALII TH7N

FI

.DO

IF TABIEI(I] N UJLL ORIF I >= BIKSIZE TH7YJ

-114

! EXIT
~Fl

CIEAflI.1KITAF (TAMEl[I])I +=[

CIEAR. DISK BIT MA? (AG2__TS1,_,,OC)
SUCCES'S CODE :r= VALID

EN D FMEZEC STORAGE

The DE1FTE-SEG Procedure is called from the relete
entry procedure. The procedure will free secondary
stora,'e for the deleted seppment, and null out the
entry in its mentor segment's alias table. The pro-
cedure returns a success code of either valid or in-
val1id.

DF1.2TE S2,0 PROMEURE (ENTRYNO **-ORL
RSUERS (S7CC'Z5 CODN ZYTE

SUCCESS CODE := F,,E SECST3RAGE(
TIIAS TPBLE.AIAS rNT.TY[NT YN] .1AGAMEIOC)

IT SUCCESSC:OF oP VA:ID THENiETURN
rl
iF ALTASTA'LE.AtSIASSN .RY[ET.Y_NO].ALIAS TA PIE 0C<0 NuE N

MI.AP hisXK IT_M AP (

ALIAS TABI?.ALIAS _NT'0[(!ETRY_].U1IC'JZ ID :=).IO

The CEECIFALIASEMPTY Procedure is called by the
Delete entry procedure. The procedure will saarch the[• alias atle to determine If the table is errpty. IV the

,I ' alias tat~le is em.pty, the variable Alias tabcle_e,,-ty

Is set equal to true and returned. If the table is not
empty, Alias table empty is set equal t, false.

115

CHEC IFAIIAC'EPT-y PROcMURE
12'TU:5NS (ALAS TABLE EMPTY BYTE)
LOCAL I BYTV -

I := e

DOIF I =AIIAS-TABL**LIMIT THIN
ATIAS-TAZIS !mPT.I := TRU?
EXIT

III ALIAS TL?.ALIAS E?, I.UdU ID THEN
ALIASZ T&B1E EZMPTy : FALSE

I += I

IP
IF

*t Tbe CECW.. 1OCAI..y--MORT Froceadure Is called from the In
S prolcedure. The procedure determ~ines if the seemient is
'~In the Drocesscr's local memory by examining the MYJ

- ~' imape for eap-h ccnne-:tpd process. If the seement is in
~' the local memory, the variable Test Is set equal to *
~' true, rtherwise It is set equal to false.

CFTCT LOCAL Yv"YOTY PROCEDURE IND3X WORD

LI)CAT I 3TTE

Dr,
IF I = M1AX DDBP. NO TFEN

TEST :=NOT IN LOCAL- E On,
R F 'JR N

F1
S FG NC I= (AST(INEX).SEMNT NO ACCESS AUTH[Tj

_ AND %(2)i1l11111
~VIF SEI NO (0 e THEN

I (mVu IMAG~rI].SDR (SEG. NOI ATTI1U'rES AN-
Y N MEMOPY MASK~C 0 TEE 17N

4f TESI :T IN I.QCAL MIEMORY

116

"ND CH7CK_LOCkL_M-MOrY

" The CF?CT FOR REMOVAL Procedure is called by the Deact-*'
* ivate procedure. The procedure will determine if the
'e segment is active in any LAST a.-d if it has any active*
* dependents. If the seem-ent is rot active and does not '
* have any active dependents. the GAST entry is removed.*

CHICK FOP R3MOVAI ?iOC D URE (INDEX WORD)
= I" I YT

TST LYTT

TEST := .AISI :" -

IF T = NO 0 PROC.SORS ORII TEST T T 'IE THEN

FXIT
?IIF G AST[INDEX].7-ROCISSORS IASTF_0l 0O! C' THEN

T ST = T?_-

0' I+= 1

I? G AF[IRDX].N) ACTIV: r2P4NDBNTS=e
AND.. TEST = TAISE .N

END CF3C10?DO REMOVAL

* The CECF IF OTF!ERS ACTIVY Pri~edure is called ,y the
I0 Delete entry- rocedure. The procedure will check to ,i - determine if a segment is active in any IAST. If the
4 * sepmert is act:ve. the variable Others artive is set .4 * equal to true, c-erwise it is set eqv'l ta false. *

OTS ATIV POCTE",11_ IND*EX 'OR1)

117

4

Ef"IRNS (OTERS ACTIVE BYTE
LOCAL I BYTe
E NTRT

I := e
Do

IF I u NO OF POCSSORS TEEN
OTERSACTIVE := PALS!
R ET URN

IF G AST[INr.X].PROCESSORS L ASTENO(TJ 0 C TEEN
5THERS ACTIVE := TPU--
RETURN71

I += I.
OD

FND C-_rCXIF OTFERSACTIVF

* The ACTIV, IN_1-AST ?rocedure is called by the react-
m ivate procedure. The procedure will search the See-

ent_#/Access auth field of a segment to determine if
the segrrert is active in the LAST. If the sep'ment is
active, %he variable Cheek will be set equal to True *

',* and returred.

ACTIVE I. AST PROCErURE (INDE WORD

RTfU!RNS- CFCECK EMTSLCCAL 1 1YT?

I :; c

CFECK := FALS!
DO

I IF I = mABX_tR_N1 ORIF CHECK TRUE! TEEN
P ! T TR N

IF I ASTCIrDEX] .SEC:MFVT NO ACCTSS AUTH 0 e TEN'
CFECK := TFU?

I +=1

END ACIV'E_IN_I_kST

41'

,l.,

" 1

S * The JDk TE I. AMT ACCESS Procedure is called by the Ir *
' 'procedure.-T~e p.Focedure will set the read/write tit

*, of the appropriate segment_#/accessauth field of the
* I AST to a one if the trocess has write accuss or to a *
* zero if the process has read access. *

'TPDATELASTACCESS PPOCEURE(INDEY OrD,ACCZSS_AUT PYTE,~ DB NO DYTE)
LOCAL SG NO WORD

ENTRY
SEG NO := LST[INDEX]. SEGMENT_N.O_ACCESSAUT.-(DAR_NO]
IF !CC-SS AUTH = WRIT? THEN

LASTTINDEX] .1GM!NTNO ACCESS AUTH[.tR NO] :=

ELSE
CEN w7 2)011111111

FND UPDATE_L_ASTACC7-SS

SThe SEA2CFG~_AST Procedure is called by the Activate '

*' procedure. The procedure will search the GAST to
*' determine if a passed segment's unique id exists in
* the GA 5 T. If the uniqve td is found, a success code *

ot found ard the G AST index are returned. If the
Ssezrnent is not founid, a success code of not-found is

* returned.

SSEARCH. G AST PROCEDU.RF (SEG ID IONGW.O iD)

RETURNS (SUCCESS BYTE, INDEX dOiD)

LOCAL I WORD

I :=
I10Op: DO'

IF I => G A!T JIrI? TFEN
STrCCSS := NOT FOUNL

4 i INDEX := NUI-, f RETURN
F'I
IF G_AST [I] .NICr'_IDI = SEGIr, TFN

1,19

SUCCESS := FODND
IND7X := I

IT~
R ETUH N

FI
+01)

TND SEARCHGAST

" The ^ T_LASTIN;TX Procedu'e is called by the Malce
I t AST_entry procedure. The procedure will search th, *I 5 LAST fron top down until an available index is found. ,
If an index is not found, a success code of IAST full *

* is returned. If an index is found, the index, and a *
Ssuccess code of valid are returned.

GET L AST NOjNDPX PROCEDURE
Y.E.TTPN-(FUCCFSSCO- E ITE , LINDE7 ".OR r
LOCAL. I 14ORD

F!JCCESS COD :% VAIID

ILOOP: Do
IF I -) ! AST.ItIIT TFEN

SUCCESS CODE := L ASTF1'I.
RETURN

.iIASTf[I] .VEOPYAID.' : ACTIV!

FI

ODND CT..ALTN_ INDEX

R -n ... Nm m alm m nmm m m mu•m mm • . m . m - .

1F

12e.

,* The GET G AST INfiX Procedure is called from the Make *
' G AST entry p;ocedure. The procedure will search the *

G AST-from the top down until an available index is
* fund. If an index is not found, a success code of *
' G AST full is returned. If an index is found. the Index
*' aid a success-code of valid are returned.

G2T G AST INDEX PROCEDURE
REfU.N- (S!CCESS_CODB BYTE , INDEX WOPD)
LOCAL I '10R D
.NTRY
SUCCI S COE := VALID

ILOOP: tO
IF I u'> G %ST_1IWIT THEN

S'rCCESSCODF :C %,_ASTFUL
FET'TF -FI

IF G PST[11.UNICUIDI = NITLI TE..NIND)E7 :- I
RETURN

END GET_G_ASTINDEX

'h The MAEGAST_!NTPY Procedure is called from the *
Activate procedure. The procedure will obtain an
index irto the G AST and enter the anpropriate data
from the alias table. The flar bits are set to not
written ant not writable. The eventcount_ and ticket
fields are set to zero. The processorLJASTE.# fields
are set to null. If the entry is succissfvll:, rrade,
a success-code of valid will be returned.

XAKE G S'T ENTRY PROC-DU'RE (PAR INDFX WORD,3NTPY NO iC'Rr)
.-z.\' su(SUCCESS COrE IYTE, INrtX WORD)
LOCAL I WORD

3,CCS NME T ~'Y -- T~ S N

A 121

14,

IF succESS ConE = VALIr THTN
G-AST [INDE-X) .UNIOUID-ID1 A= AIIA 3TAB 13,A II A SXNTrL

ERTRYNO].NIQUID-ID
G-ASTCINDEXI.G1OBA1. ADDR :=ACTIVE
G-AST[IND'37l.FLAGBITS :=G ASTrINLZX).FLAG-BITS

ANf (NOT WRITTEN MASK
G-AST[I ND77 .FIAGEITS := CAST[IN12v-XJ * TLAGB.ITS

AND f nIOT WRITABLE-MASK
G -AST[INDEX).G STE NO..PAR := PARTND~x

0AST (I.4JTXJ .N6 .ACTIVE-.IN EMOR.Y e=
G ST[IM!DE.,X).iO:ACTIVrEDzPENDENITS :=e
G-AST[(NDrX).SIZEP1 :-% ALIASTJABLE.ALIAS - N~iR(

'FAST (INDE-X).PkG'": TABIZ LOCI :=?N]SZ

PLIAkS TAZ'LEr.AII.._-.ET!ENTR:'YNOJ .PAG'-TABLE.-LCC
G-AST [INDEXJ .AI.IASTAILE .LOCI :=r

ALIAS TABLE. ALIAS ENTRT (ENTP.! NO) .ALIASTABIEL!_OC
G PST rINDTXb'.INSTANCE1 : 0

G-AST Iriktp] .INSTANCE2 e=
G' .SINDEX) .SCUENCEzR :~e
1IL ".o': DO0

IF I -N0FPDOCESSORS THEN
!I IT

F I
CAST (INDE.X) .?OCESSOPS1..ASTE._NO (I I NITTLI
I +=

SUCM'SS1CODE := VALID
FT

7N mATGSTNTRIY

* The "A 7T _IAST ENTRY Procedure is called from, th~e
* activate proce~ure. The procedure will olbtain an
* Index into the L AST and en~ter the appropriate data. *

* The mem~ory addr field Is set to active, 'the sepnment *

2 ~ ' */access auth fields are initialized to zero, and
* the passed segmrent numter is entered intc the ap-
* propriate location, If the entrv is successfully*
i rTadp, a success-code of valid is returned.

mATI AST 7'NTRY PROCEDUor (LBR No BY.TE", 3-1GMTNT NO WORDt2
a';tnJPNS (SJCCirS.SCODT! MYE, 1JNE7F woF~L

I 0CAI I PYTE

122

F
SEG NO WORD

sENR S orE, L INrE? := GET LASTINEX

IF SUCCESS CODE '> VALID THEN RETURN
FI
I._AST[T_INrX.MEMORYADDR := ACTIVE
I := eDO I,_ASTrLINIEX] .SEGMENTNOACCESSAUTH[I]

:= e
I += 1
TF I >= MAXDBRNO THEN EXIT
'I

OD!AST[_INDEXI .SEGMFNT NO ACCESS PUTH[DBR NO) :=SEG' NT 1 O
END MAK_1_ASTF4TRY

*A The DEACTIVATE AL, Procedure is called by the *

' Detete entry Drocedure and by the Vain line
* procedure. The procedure will deactivate the
4 " deleted segment from all connected process'
a 'ad.ress space. The C AST index and the I AST

Index foi- the deletel segment ere passed to the
~ procedure. If the segmPnt was successfully
* deactivated from all connected .rocesses, a
* success-code of valid is returned.

DrACTIVATEALI EOCET"?. C INDBX W'IP, I_INDE. W'OF1
RETURNS (SUCCESS CONE BYTE
Iocki i PYT.
ENTRT

I := .
Do

IF I -MAX D-m NC THEN ETIT

IF LAST(IIN! X .SEG MFNTNOACCESSAUTF[!]
> ZEPO TFEN

SUCCESS CO , := DEACTIVAE (I. INDEX
IF SUCCESSCODE 0 SEGDFACTIVATED TEEN

RETUPJF N

FI r

\(succEssOE con VALID

END DEACTIVATE-All

1i

* The SIGNAl C'THER EMORY MANAGER Procedure is called
'~ by the In procedure. The procedure will signal *
•,* a memory manager to move a sepment from its local
*' memrory to global memory. When the segment is moved

to rlobal memory the procedure will signal all other
- connected memory managers to update their local *

" databases. The global address for the transfer *
is passed. A success code is returned to indicate

* the success of the operation.

SIGNAL_OTHEPFE!0ORY_MANAGPS PROCEDURE (
SEG INDEX WORD, ADDR WORD

r:TTNPNS CSU CESSCODF ZYTE
IOCAL

PROCESSORNO B71TE
FIFST BYTF
L ENTI V NO WORD
VAlID MSG BYT?
MFG ARRAY [AXMSG SIZE BYTE]

ENTRT
FIRST := TRUE
PPO'CQSOR_NC :=
DO

IT PROCESSOR NO PROCESSOR ID THEN
PROCESSOP NO += 1

PI
IF PROCESSOR-NO >= NOOFPROCTESORS THEN

FI
•INTRTNO := GAST(SEGINrEv-,.PROC2SSoR I AST!NO[

PROCFSS6R-IP
IF I !ENTRY NO 4 > N'UL THN

I:T FIRST = TRUE TFEN
FIRST := FALSE
IF PROCESSOR NO
CASE F THEN

SIGNAL (VPID. r'EMORY MANAGER F. mOVE,
L ENTRY NO, ADDR, GAST[sCINrEXI.SIzE7P_ID, MSG := WAIT

*** * CHECK IF VALID MFG '*
_IVALIr MSG := VALIDATE WAIT M ASSAGE 'YSG)FI r '. .:1[LS

IF PPOCESSOR NO
CASE 0 THEN-

SIGNAL(VP ID, MEMORY MANAGER f, UP'ATE,
I, ENTPY NO, ADnF, G AT SEG INEX].SIZT
vf-ir, MSG := WAIT

~~ CFEC, IF VALID MSG ~~~3
VALID-mSG := VALIrATE_WAITMESSAGE(MSG)

FI

F1
PPOCESSORNO += 1OD

IF V A T ID -M S G ,:'"..E N,
SUCCESSCODE := VALIDELSP'

SUCCESS CCE := INVALID
FI

7ND SI NAI TFT2 MEMO'R MANAGERS

* The CMEATE ENTRY Procedure is called by the *
* Main line procedure. The procedure will create *
* an entry irto the alias table and allocate sec-
* ondary storage for the created sepment. If the *
*I 4 alias table does not exist, the procedure will *

* create an alias table on seiondary storage.
.- A unique id is assigned to the segment and the *

[appropriate data is entered into the table.
* If the function is successfully -orpleted, a
* ' success-code of se ent-created is returned. *

•

*

ipl AT, _ T' , -Y PR CEL F (PAR INDEX. dORD, ENTR i'_NO WORD ,
SU1E WORD, CLASS BYTE)

.'.'I'RNS (FTCCFSSCODE EYTE

LOCAL PAGE TABLE LOC WORDI I BLT S '4 0 R

ENTEY
LKKS := SIZE / LK SIZE

JIF G AS T [P A R _IN XL] .G _AST , NO -PA R -0 Z 7 RO TH E N
S!TCCFSS COrF := CREATE AlAIS TABLIV PAR IN EY
IF SUCCES CODE 0 VALID ?EN

RETURN -'- Fl

125

K

QT:CCECS CODE :FZAD ALIASTABFE(
G-ASTEPAR INDEX) .ALIASTA31rEL0C1, #ALIAS-TABIT)

IF S!-CCESS CODE <> VALID TITN

FTRETUR.N

IF ALIAS TABLE.ALIAS-ENTRY[EENTRYNO).UNICUID ID e> e
TH3N

SITOCESS -CODE := DUPICATE iENTRY
FIET"I? N

TI
PAGY TABLE LOC, SUCCESS CODE := ALLOC SEC STORAGE(

BLFS)
IF SUCCESS CODE 0 VALID THEN

RETUTRN
FI
AIIAS TmABLE.ALIA3 ENTRY[EENTRYNO] .UNIO'JEIt

SUCCESS CODE := GET2WJIO Ir
IF St!CCESS CODF 0> MAID THEN

RTI RT UR N

AlIAS TABLE.ALIAS ?NTR~rENTRY NO1.SIZE- := SIZE
ALIIAS-TADLE.ALIASENTRYENTRY:-NO .C!ASS :- CLASS
AIAS-TADLE.ALIAS rNT RYrENTRT-NO) .PAGETABLE -bC

PAGE TAILE.LOCII AIASTAPE.AIASENTYEETRY'~]AIIAS TABIF-LOC :=e
SUCCESCOD? := WRITE ALIAS TA 'TE(GASTIPARINDnr~)

ALIAS TABLE LOC, #ALIAS-TAIS
IF SUJCCESS CODE =VAIID THfEN

* SUCCESS ZODE :=SEGCREATED
TI

END CnZATI ENTRY

* The rF1.ETF ENTRY Procedure is called by the Yain-
* line procedure. The procelure will rerove a seprrent

from seconalary storae-e by deleting Its entry in its *
* mentor serment s alias table in'I deallocatinp, its

alotdsecondary storage. Before the se~Rrent Is
delted th GAST is cher'ked to ensure that no other*

proes hod ! he sepment active, and that the serrent

segoment, deletion Is not allowed. If the segment is
* active, those pro-esses will be sip-naled to deactivate)

* the procedure. When the segment i(, deactivated, it *
* I'~ ~will be deleted. If the deletion is successful, a

* success-code of sep-deleted will be returned.*

125

rFF!TENTRY PROCErURF (PAR INME WORD ? NTRY NO WORD
RETUffNS (SUCCESS COrE 3TT
LOCAL. I-INDEX WARD

INrPX WORD
I BYTE
AL.IAS TABLE.EMPTY ETTr
OTFE??S)CTIVT ~ BYTE

ENTPY
IF GAS'T[PARINDrX) .ALIAS TA-bLE LOC1 <> NUll. T FEN

S77CCFSS-CODF := READ.-ALAISTTELE (GAST(PAP...INDEX].
AIIAS TABIELO, 3*, #ALIAS TABIF-)

LSucps-o := NO-CEILr-TO-DELETE

IF SUCCESS CODE 0 VALID THEN
RFT'jN

ALIAS TA 11E EMPTY := CHECK IF ALIAS-EMPTY

SCESEUCCES CODEX := SEACIVASTLID 1X JD

IF SUCCESS CODE 0 VALID -TFN

~: IOTFE.S ACTI7F :~CE2CK 1F OTFSRS ACTIV2
IF OTffERS ACTIVE = TffE -TEN~

S IGNIAL ThERS TO DEACTIVATE ALL
F'

TIv D?lETE S!-I (ENTRT .4O
AIIAS T-ABlEr.A.IAS .KNTRT?NTRY NO).UNICU2 Tr c=£
SUCCESS-CODE := WR.ITE-ALIAS TABLE (G AST!?AR TNTX)

ALIAS -TAItE LOCI., '4LIAS-TAH
II.IF SUjCCE.S COT? VALID TFEN

S!TCCFSS COTDE :=SEG DELETED
Pi

SUCCESS CIODE := DEPENDENTS EXIST

EIND DETET7E YNTRY

1.27

* The ACTIVATT Procedure is called by the Main line
procedure. The purpose of activate is to add a *
seRrment to the user's address space. The procedure

* is passed the segment_#, the parent's handle, and *

the entry number into the alias table for the
* seement. The procedure returns the size.
* class., and the handle for the activated segrment ,
* The G kFT is searched to determine if the segp'ert
* is alfeady active. If the seement is active and
* not in the tLAST, an entry is made in the LAST

and the G AST is updated. If the segment is active1in both t~e G AST ani the LAST, the entries are
* updated. If the segment was not active, entries *

are made in both the GOAST and the L AST.
* If the operation was successfully completed. a
F success code of segactivated is retlirned.

ACTIVATE PROCEDURE (DER NO BYTE, PAR IND-X :O r,
ENT NO .iOP, SEGMENT NO YTE,

. TT*~, S C 1TCCESS COfE BYTF , GASTF!NrLE FAMrE
CLASS BYTE, SIZE WORD)

lOCAl I, INDEX WORDI qD. ! Wo OR
ENTRT
TF G_AST(PARINrEXj.A.IASTAILELOCI > ZERO TEEN

S!'CCESS-CCrT := READ ALIAS TAIL3JG.ST(PAR INMr .
• ALIAS TABL- L3C1I. #ALIASTA..IE)[ELSE- -

ST'CCEs-corL? NC LEAF Fxis,"F71
IF SUCCESS CODE <> VALID THFNP ?T"R NJ

STCCESS CO!DE , INrFX := SSARCH G AST
ALIAS TALF.ALIAS _7Nk.RY[EN7TRY NO].UNICU? ri

IF SUCCESS CODE FOUND THEN
L-ND-X GAST[TtKDEX] .?ROCESSORS tASTE NO[

PpocnssCpJVTIF L INDEX C) NULL H" N
1 • ST[LINDFX].SEGMENT NO ACCESS AUTH[V2E_-O) :t

-- SEG'ENTNOA +, 'I.SE
SUCCESS _CODE, LINDEX := MAKE I AST TNT.Y

ri] NO. SEGFN NOT- SUCCESS CODE <> VATID TEEN
, t.2 RETUR N

FI

128

I, '(.

G-A~mrINr-E~j FROCESIOPS I ASTFN0(P0.Oc5ORIDI
:=VIRDEX

a. El
IF G AST rINrv2XJ.ALIAS TABI-3 LOCI = NULL. THEN

3~~ST (AR-INDzX] .N0DPF-T -ACTIVE 3 1

?I

STJCESOD, ND-EX:=MAE__AT NRDEXYO
F SUCCESS OD :OD, SG ATATED~ t

UCS AIIA LE.INE =TY(S--TENTFCO .IS

CPA AS INDLEXDE ENTRY-NO

?ND CTRVT?

CisASSd the proeS'.~r, ALI AS P and T the] CTIASeS

oThe SWAP eUT odr Is saed oyuth Mai leine.
prosucessr orei eund idct the sPeasoch~oeato.Tae procedure .ersThe
~~~rcdr wil reov segment fromteprcs'MJ ma n if no
ap sore it iseunco scndary storag e cdr

~~ j ~ *imemory untlal process have wapd the Seentex
fo o th of ainment ob.pedoto% ioy

~ I ****** A*success c**e**s**e*tur*ed*to ***d**a**e*the*success

ofA Oth( ?prOCEtioR Th p NO BYTeu INer!ve tOhe

SWAP O SIT PROC~UE(LIN YE NE WORD

129



ENTPY
?LFS := G ASTtINDE71 S1?Z-/ DLlZ

I INDFX%= AST(INDEX3 PRCSO SF N['O7SO

!5f( NO '.= f kS TLINDE73 .SEGMENTO.0.ACCESS-.AUTF(Dt??-NO]
YR! DTOCESS VIPT!3AL..CORE ( BLTS )

DFE-EMMU ERTRY ( DIP-NO0, SEG..NO

G ASTENlEX1 .N0 ACTIVE IN MEMORY -=1

17 (MMTAUIMAGE[D ROj.SDRTSvG NOIATTPI3JUTES 
AND

WRITTEN MASK) 0> 0 TFEN

GASTtI4DEX] .TTAG-lIS := GAST[INDE! 
.FLAG ?I~TS OR

IT G AST (INrEX.LOAL..APDR = NULL TFEN

ifG..STfIND-!XT .NO ACTIVE IN MEOY= I'

(G-ASTfIhDZX) .YLAG)ITS AND WRITTENMASK) 
0 0

TF CESSNCOE = WRITESEGMENT ( G AST[IN 'FlI.
PAGE TABLE LOCI LAT(I.INDTX].
MEMORY AorR

IF SUJCCESS CODE (0 VALID M.FN
RETURN

Yl
FREEOCAl_?.DT.YAP (I..AST (NDF.T .MrMOPY..ADr,-

IF G AST(INDEll NO..ACTIVT-IN ME'MOPY - 0 TIEFN

F::.10C AL_.BIT.MAP ( AST(I INDFX].

Ft tw'M.RADDR, ILKS *

F1

I? G ASTINDE7I ,NO,.ACTIVE_.IN.MEAORY 9 ANDIY

(G ASTIND-U].FLAG ilTS AND WRITTEN 
MASK) 0 e~ TFEN

silCC!ss C;_ : WPITE SEGMNT (-G AST[INDTX].
PACETALE.LOCI G AST £INDEXT.GtOAAr

IF SUCCESS.CODE 0> VAlID TFEN

I';FREE GLOBAL B.IT IAP G GASTINDX) .GIOBALADDR,

TF G AST(INDEX].NO .ACTIVE IN MEMORY 6 T TH2-N

TEt.GLClAl_2TMAP( GAftINDLEK3 GcIOBAI ADDR,

Fli

SJCCSS CODE : SWAPPED-OUT

N SW A? OUT



* The DEACTIVATE Procedure is called by the
* the Main line proredure, the Deactivate all
* procedure, or the Delete entry procedure.
* The purpose of deactivate is to remove a segment *

* from a process' address space. The segment is
*' removed by deleting the segment number from the *
*' LAST. If no other processes have the segmentF active and no children are active, the entry
* is removed from the LAST and the G AST. *

The process' DBR.# and the deactivated segm ent's
* G.ST index are passed to the procedure. A
*' success code is returned to indicate the success *
* of the operation. *

11EACTISATE PROCEDURE ( DBR NO TE, INDEX WORDRETURNS (SUCCESSCODE -ZYTE j
LOCAL L. INDEX WORD

S 'GNO BYTE,

CFECK BYTE
PAP INDEX WORDENTRY

PAP INDEX := G AST[INDEX .G.ASTENOPAR
I INDEX :- GA§T[INDEX_.PROCESSOR L ASTE NO[PROCESSOR ID1
SEG NO := L KST[L INDEX] .SEGMENT NO ACCE9SAUTH[tBR 0]
IF -GAST(INDTX].NO ACTIVE IN MEMORY 05 e THEN

IF (MtU lMAGE[DB_ NO].SDR[SEG -VO].ATTIIUTES AND
IN MEORY RASK) z,'Ro TFEN

SUCCESS CODE := SWIP OUT T DER NO, INTS, I
IF SUCCESS CODE 0 SWAPPED OUT THEN

RETURN

".1 FI

4; ; ij~g I AST( INDEX] .Sf v.LrT NO ACCESS AUTE(DM- NO] :C e
CHECK := ACTIVEIN L AST(-L INDE. )
IF CHECr = 0 THEN

_IAST([_INDFX].MEMORYADrR := AVAIIABLE

IF PAR INDEX .> 0 THEN
G AST(FARINDE) ].NO ACTIVE DEPENDENTS -= 1
CHECK FOR REMOVAI ( PARJINLEX )

' Ft

*? CHECK FOR REMOVAL ( INDEX )
SUCCESS CODE := SEG DEACTIVATED

END DEACTIVATE

131



The MOVE TO GLOBAL Procedure is called by the
* Maln_lin pFocedure. The procedure is called to
* to move a shared and writable segment to global ,

memory. The procedure is passed the L AST index, *
* the size, and the global address for The move. *

A success code is returned to indicate the
* success o? the operation. The procedure locates
* the segment in Its local memory, transfers the *

segment to global memory, and deallocates the
local memory.

* *************************** **.

~iI ~ MOVETOGLOBAL PROCrunrE LJNLEX WORDl, GLOTA. AmD
ADDRESS, SIZE WORD

RETURNS ( SflCCESS CODE iTTE
LOCAL S?, NO BYTE

I BTTEENTRT
MEMORYOVE ( LAST(LJINDEX).MEMCRTADDR, GLOIALArLR,

SIZE )
L AST(L INDEX].MEMORT ADDR :S ACTIVE
I:-
DO

I I - MAXDBR NO THEN EXIT

SEG NO := L AST L INDEX].SEGGMENTNOACCESS_AUTF(I]
XN D Q.r2)k~iiiiili

'~ ? IF SFC NO 0 C ANtIF (MMUIMAGE[I3.SDR(S7G N'0].
- ATTRIBUTES AND IN -EMORYMASK) = - TEEN

MIMUIMAkGE(I) .SDR [SEG "$NO] .PSZ ADDR := GI.C.AL-ADr
FIA I I i

OD
FPE LOCA1 BIT_MA ( IAST[LINIEX].ME-iORT'ADfR, ELKS
SUCCESS CODE := VALID

END MOV TO_,O]BAL

re 132

I. >(



* The SWAP-IN Procedure is called by the Mainline *I: ' procedure. The procedure will transfer a segment *
* from secondary storage to main memory. The proredure *
* is passed the process' DBR_#, the seement's GAST
*: index, and the authorized access to the segment.H * A success-code is returned to indicate the
* success of the operation. ( successful v swappedn ) 
F ~If! the segment is not already in memory, the appro-
* priate rremory is allocated and the se~ment is trar.s- *
* fered to the allocated memory. I the segment is *

, writable and sharedd the segment is transfered into ,
* lobal remory.

41 SWAP IN PRocuruR!INMF WORD TrZ NO ZTTFACCESSAUT" BTTF)
.ETURNS ( STUCCESSCODE iYT- )
LOCAL BLKS WORD,

TST BYTE
SEG N3 BTTE
LIRDFX WORD
BAS5_DrR ADDRESS

!'NTRY

BLIKS C ( AST[INDEX1.SIZE / ZL* SIZE
L INDEX:=6 AST[INDrFX] .PROCESSOR- ASTENO(?ROC.SSOR I'1

ki itSZG NO :- L ASTIL INDEX] MSEME-T NO .4CCESS k'JTH[DBP.N1%04
STCESSCOr! := CPFCK _AX VIRT"VAI_Ct R. ( I)R_NO, BLKS
IF SUCC!SS COrv" = VIRTUALCORZ_ 'UL T FEN

RETURN
FI
CAPST (IND?X].NO ACTIVE-INMEMOT += 1
IF ACCESS ,IJTH - WRITE THEN

OAST(IDEX].FIAG BITS :L AST[(NEX].FLAGBITS OR"] FI W I TATTL_'/_FASK",

S:!CC .SS COrTBASEArDR := ALIOC LOCAL .MEGRY(ILKe

[ IF CCES$_ODE =LOCAL ME,',ORYFULL" THEN

FFI

*FSUCCESSACODE := READ SEGMENT ( G ASTI. F]

K I SUCCESSODE <> IANI]* TI-,A

B ~ ~ ~ ~ ~ AI TEENCICL_,'M

REET CA0 I IA? ( LASEAADDR, MOS )

11k3

IF SUCCES COE<, A TTF- - -

R: 7TTI.1
)r

f1-



I.AST (LINT]. MEMORY AfltR : = EAS FArflR

BASF ADDR := LASTELINDEX3.MEM0RTADDR
TI

ELSE
IF G AST [INDEX] GLOBAL ADDR NULL THEN

SUfCCESS CODE, TASEADrDR :=ALLOC-GLOBAL MEM1CRY(
BIKS

IF SUCCESS-CODE a GLOBAL MEMORY FULL TEEN
RTETURN

IF TEST -IN-LOCAL THEN
SUCCESS-COLE :- MOV3 TO-GLOBAL ( L IND7EX,

BAS1EADRtGAST(INEY.1] STZEI)

IFSUCES-OD 0VALID TFN~rPIK

YRESENO GL1LIASE BiAr, ACCES U

ST CCCESS CUTE

IF SUNDS SWAPVAIDJN7

.F1
BAEAD '%*?-AS (INDEX) GL2LAD

* *I

II~UP&T I ~ spse hASTC"S (nex Ie, And gloal~ address

lionte sroedue. te proced.ur ucs oe is retred whe

Sto Indicate the success of' the operation.*

MOVE TO LOCAI POCEDUPE CL INDEX WOR.D, GLOBl ArDR

134:



RE'TURNS ( SUC"C".SS CODE BTT)
LOCAL BASEADDR7SS ADDRESS

SEC-,NO I Y T?
I BTE
BLIS BYTE

ENTR.Y
BLKS := SIZE / BLK-SIZE
SUCCESS CODE, BASE-ADDRESS :- A1ILOC LOCAL MEM0PT(T1KS,
Iu rCC CODEis (>s VALID THEN

RETURN
F'
MEMORT VOV3 ( GLOBALADER, BASF, ADDRE SS, SIZE
1_AST(LJIND:X] .mEVORYADDR := BASEADDR3SS

ro
IF I = %,IAXDBRNO THEN EXIT
SSG-NO :- L AS'T(L INDE-XJ.S-ZGMENTAN'OACCS-AT~l

AND "(2Te1SSUT
IF SEG-NO 0> 0 ANPIF (M IMAGE(1 CISPR(SEG NO]

ATTR1IMJTS AND I MEYORYMASK)= TEEN
S[I] SICSEG .N.L.BA A1DR:=SDEADDP,2SS

END MOVYE TO-LOCAL LI

*that was moved t o global memory by the M1ove to global
Dricedure. The procedure is passed the L AST Irdex,
the size, and *,he global address of the segment
that was rroved to global address. A success code
is returned to indicate the success of the operation.

I? UPDATE PROCEDURE ( L IX WORD, GIOSAL A"VrR ArLBESS,

RETURNS ( SITCCLs OE BT
t0I, OCk E G NC FYTE

I := I BYTE

135



DIF I = MAX DBFR NO TEEN EXITIF
SEG-NO :- L AST[L INDEX] .SErGMENT NCACCESSAUYTH [II

AND *%T'2)01111ll1
IF SEG NO 0> e ANLIF (MMUJIMAG- II.SrR[SEGNC).

AT6TPIDUTES AND IN MEMORT-MASKj = 0 THE~N
MMU-IMAGE(CI).SDR(SEG 'ZNO) .DAS rAIDR := CLOBAL-ADDR

F'

OD
BL1KS : SIZE / ILK SIZE

F'~EE tCAL~IT APr L..AS(LINDX.MEORYADD', BLKS)
I ASTrL-IND2X) .MEMORY ADDR := ACTIVE
SiICCESS CODE :. VAir-

,N JPDATE

$SECTION MAIN

MAIN LIN?, PROCEDURE
LOCAL FUNCTION IfTE

ARGUJMENTS ARRAY ??? BYTE)
~~SG ARRAY LmAX mSG SIZE T)

VPID TYTT

ENTIY SUCCESS COD? BYTE

T ** VLIDTE HE SG FOM iAIT* *
FFUNCT ION
CASE CREATE ENTRY THEN SUCCESS-CODJ :

CREATE ENTRY(ARGUMENTS)
CASE r!LFTEF.NTRl ThYN SUCCESS CODE !=

DELETE ENTRY(APGTMENTS)
CAScv ACTIVAT! THEN SUCCESS CODE,FANDtE-,CtASS,SIZE :

WCTILVAT ( ARGUMENTS )
CASE DEACTIVATE THEN SUCCESS CODE

DEACTITATE(ARGUMENTS)
CASE SWAP IN T~rN SUCCFSS CODE :4SWAPIN (RUFT
CASE SWAP-OUT TME SUCCESS CODY

SW~AP OUT (ARGUMrNmS

136



CASE MOVETOLOCAL THEN SUCCESS CODE :=
MOVETOLOCAL(ARGUMENTS)

CASE MOVE TOCGIOBAL THEN SUCCESS CODE :=
MOVE Tu GLOBAL(APGUMENTS)

CASE UPDATE THEN SUCCESS CODE:
UPDATE( ARGUMENTS )

CASE DEACTIVAE ALL THEN SUCCESS CODE :=

r' 
DEACTIV.ATEALL(ARGUMENTS)

SIGNAl ( VP ID, SUCCESS CODF, ARGUMENTS )
OD

END MAIN LINE
END MEMORYVANAGERPLZSYS MODULE

=I

1

i i 137

'.a



APPENDIX B - PLZ/ASM SOURCE LISTINGS

I THE PLZ/ASM MODULE WAS WRITTEN TO PROVIDE SUPPORT FOR
I THE SWAPIN THREAD [APPENDIX 33. THE VALIDITY OF THE
I CODE HAS NOT BEEN THOROUGHLY TESTED, NOR HAS IT BEEN
I OPTIMIZED. THE CODE SIMULATES SECONDARY STORAGE IN
I MAIN MEMORY, AND WAS NOT INTENDED TO BE USED IN AN
I ACTUAL SYSTEM IMPLEMENTATION.

M MGR 2 MODULE

! * * * * VERS. 1.0 1 * * *

CONSTANT
FALSE :=
TRUE :- 1AVAILABLE := 0 1 AST ENTRY AVAILABLE I
ACTIVE =1 1 AST ENTRY ACTIVE IZE.RO :=
NULL := %0000
NULL PAGE : 0
HBUG := %A900
MONITOR := %059A

I SUCCESS CODES
INVALID :u 0
VALID :=1
FOUND := 2
NOT-FOUND := 3
SWAPPED IN := 4
SWAPPED OUT := 5
SEG-ACTIVATED := 6F'SEG DEACTIVATED := 7
SEG_ CREATED := 8
SEG.DELSTED :- 9
LEAF.SEG.EXISTS := 10
NO LEAF EXISTS :- 11
G AST FULL := 12

4, 1L AST-FULL := 13
IN LOCAL MEMORY := 14
NOT-IN.LOCALMEM := 15
LOCAL MEMORY FULL:= 16

4 GLOBAL MEM FULL :=1?
VIRTUAL CORE FULL:= 18

J 4-DUPLICATEENTRY := 19

13e

PT



NO CHILD TO DEL := 20
SECSTORFULL := 21
DISK.ERROR := 22
ALIASDOESNOTEXIST := 23

ATTRIBUTE MASKSREADMASK :=%(2)11111110
WRITEi_MASK :% %(2)00000001
CHANGEDMASK := (2)01000000
IN MEMORY.MASK := %(2)00000100
CLEARED := 1 ! CLEAR ATTR I

AUTHORIZED ACCESS I
READ := 0
WRITE := 1
EXECUTE :% (2)00001000

GAST FLAG BITS FIELD MASKS I
WRITATLE MASK :X (2)00000010
WRITTENMASK :m Z(2)0.0000100

DESIGN PARAMETERS I
BLK.SIZE := 128
MAX.PAGESIZE := BLK SIZE/2
NOOF PROCESSORS := 1
MAX DBR-N0 4 1 EVEN NC. OF DBR #'S I
GAtTLIMIT 16 1 MAX INTRIES IN-0 ASTI
L AST LIMIT =16 1 MAX ENTRIES IN LAST I
MAX ENTRY NO :u 10 1 SIZE CF ALIAS TABLE I
NOSEG-DESC.REG : 8 I NO. OF SEGMENT/PROCESS!
FST POSS.FREE.LK:- 1
DISI{ M£M.BASE := %900
MAX-POSS-D, BLKS == 96
GLOBAL MEM.BASE := %8000
MAX.POS -BLXS : 32
LOCAL MEM BASE := 6000
MAX.POSS.LBLKS := 64
DISK-BIT-MAPLOC := 0

ADDRESS WORD
ALIA. HEADER RECORD [

SEG.PAGE TABLELOC WORD
PAR ALIAS TABLLOC WORD J

E SEGDESC.REG RECORD [

BASE ADDR ADDRESS
LIMIT BYTE
ATTRIBUTE BYTE 1

ALIAS RECORD [
UNIQUE_ID WORD

5 CLASS WORD
SIZE WORD

139



PAGE TABLE LOC WORD
ALIAS.TABLt.LOC WORD ]

MMU RECORD (
SDR ARRAY [NOSEGDESC RIG

SEG-DESCREGI
BLKS USED WORD
MAX_BLKS WORD)

GLOBAL

I$SECTION GDATA I

GLOBALMEMBITMAP ARRAY [MAXPOSS_GBLS/16 WORD)

G_ASTLOCK BYTE

I $SECTION LDATA I

MMU IMAGE ARRAY (MAX DBR NO MMU]
LOCALMEM)BITMAP ARRAY [MIX-POSS L BLKS/16 WORD)

ALIAS-TABLE RECORD ( HEADER ALIASEEADER
ALIASJNTRY ARRAY
[MAX. ENTRY :40 ALIAS]

DISKBIT MAP BUFF ARRAY J6 BYTE)"

PAGETABE.BUFFER ARRAY IBLK SIZE BYTE]
INTERNAL

COMPACTL PROCEDURE
ENTRY

END COMPACTL

COMPACT G PROCEDURE
ENTRY

END) COMPACTG

GLOBAL

ALLOC LOCAL MEMORY PROCEDURE

I PASSED PARAMETER I

! RO a BLKS OF MEMORY !
I RETURNED PARAMETERS II RO a SUCCESS-CODE I

I R1 - BASE-ADDR I
I LOCAL VARIABLES I
I RO - BLKS I

Rio a BIT MAP INDEX
I RlU COUNTER FOR BIT
I Ri2 = BIT-MAP WORD I

I R13 = WORKING REGISTER I

,I ~I 140



LOCAL BLKS WORD
IS COMPACTED BYTE
FILLER2 BYTE

ENTRY
LD BLKS, RO
LDB IS.COMPACTED, #FALSE
LD R10, #ZERO
DO

CP R10, #(MAX.POSSLBLKS/16)
IF EQ THEN

CPB IS.COMPACTED, #FALSE
IF EQ THEN

CALL COMPACTL
LD R10, #ZERO
LDB IS-COMPACTED, #TRUE

ELSE
LD RO, #LOCAL.MEMORT.FULL
RET

PI

LD Rll, #ZERO
LD R12, LOCAL MEMBIT.MAP(RIO)
DO

BIT R12, RII
IF Z THEN

DEC R0, #1
ELSE

LD R09, BLKS

CP R0, #ZaiRO
IF EQ THEN

LD R1, RI
MULT RRO, #16
ADD R1, Rll
SUB R19 BLKS
MULT RRO, #3LK SIZE

', ADD RI, #LOCAL-ME.BASE
LD RO, #VALID
LD R13t ELIS
DO

LD R12, LOCALMEM-BITMAP(R10)
p DO

SET R12, Rll
DEC Ri3, #1
DEC R11, #1
CP R13, #ZERO
IF EQ THEN

LD LOCALMEMBITMAP(R10), R12
RET

Si!141

/1,!



CP R11, #ZERO
IF EQ THEN

LD LOCAL.MEM.BITMAP(R10), R12
LD RlI, #15
DEC R10, #1
EXIT

Fi
OD

ODPI
INC gl, #1
CP R1, #16
IF EQ THEN

LD R11, #ZERO
EXIT

FI
OD
INC Rio, #1

OD
3ND ALLOCLOCAL.MEMORT

FREE LOCAL BIT MAP PROCEDURE

I PASSED PARAMETERS
1 RO = BASE.ADDR
I R1 - BLKS
LOCAL VARIABLES

I RIO = COUNTER FOR BIT RESET
I RI = BIT-MAP INDE1
I 2 = BIT MAP WORD

ZNTRT.:!I CLR R10
LD Rll, R0
SUB Ri1, #LOCALMEMBASE
DIV RR10, #BLK.SIZE*16
DO

LD R12, LOCALMEM-3IT.MAP(R11)
DO

RES R12, r-0
DEC R1, #1
CP El, #ZERO
IF LT THEN

* LD LOCALMEMBITMAP(Rl), R12
RET

V INC Rio, #1
CP R10, #16
IF EQ THEN

LD LOCALMEMBITMAP(RlI), R12

142



LD R10, #ZERO
EXIT

FI
OD

ODINC R119 #1

END FREELOCALBITMAP

FREE GLOBAL-BIT MAP PROCEDURE

I PASSED PARAMETERS
RO = BASEADDR
Rl = 3LKS

I LOCAL VARIABLES
RI0 = COUNTER FIR 31T RESET

I RI = 3IT.MAP INDEX
I R12 x IT MAP WORD

ENTRY
CLR R10
LD R11, RO
SUB RII, #GLOBAL_MEM_BASE
DIV Ro, #BLK.SIZE*16DO

LD R12, GLOBAL.MENBIT_MAP(Rll)

DO
RES R12, R10
DEC RI, #1
CP Ri, #ZERO
IF LT THEN

LD GLOBAL.MEM-BITMAP(R11), Rl2

2' '~RET

INC Ri, #1
CP Rio, #16
IF EQ THEN

LD GLOBALMEM BITMAP(RIl), R12
LD RIle, #ZERO
EXIT

OD
INC Rl1 #1• OD

END FREEGLOBALBIT MAP

14:3



ALLOC GLOBAL MEMORY PROCEDURE

I PASSED PARAMETER
1 RO = BLKS OF MEMORY
I RETURNED PARAMETERS

RO - SUCCESS-CODE
1 RI = BASE-ADDR
I LOCAL VARIABLES
I RO , BLKS
I R10 a BIT MAP INDEX
I RII = COUNTER FOR BIT
1 R12 - BIT.MAP WORD
I R13 WORKING REGISTER

LOCAL BLKS WCRD
IS_COMPACTED BYTE
FILLER3 BYTE

ENTRY
LD BLKS, RO
LDB IS.COMPACTED, #FALSE
LD RI0, #ZERO
DO

CP R10, #(MAX_POSSGBLKS/16)
IF EQ THEN

CPB IS.COMPACTE , #FALSE
IF EQ THEN

CALL COtPACT G
LD R10, #ZE.O
LDB IS.COMPhCTED, #TRUE

ELSE
LD R09, #GLOBAL-MEMFULL
RET

LD Rll, #ZERO
LD R12, GLOBALMEMBIT.MAP(R10)
DO

BIT R12, Rll
IF Z THEN

DEC R09, #1
ELSE

LD R0, BLKS
CP R , #ZERO
IF EQ THEN

' LD RIt R10'!ii'MULT RR0, #16
ADD R1, RlI
SUB RI, BLKS

'. MULT R, #BLE-SIZE

14

[r e



ADD RI, #GLOBALMEMBASE
LD R0, #VALID
LD R13, ELKS
DO

LD R12, GLOBALMEMBITMAP(RIO)
DO

SET R12, R11
DEC R13, 41
DEC RI1, #1

i CP R13, #ZERO
IF EQ THEN

LD GLOBAL.MEMBIT.MAP(R10), R12
RET

Fi
CP RIlI, #ZERO
IF EQ THEN

LD GLOBAL MEM.BIT.MAP(Rl), R12
LD Rll, #i5
DEC R10, #1
EXITFrI

ODOD
F!
INC Rli, #1
CP Rl, #16
IF EQ THEN

LD Ri, #ZERO
EXIT

OD
INC Rio, #1

OD

END ALLOC_GLOBALMEMORT

ii READ PAGE PROCEDURE

I PASSED PARAMETERS I

I RO = BLK NO
I RI = BASE ADDR
I RETURNED PARAMETER I
S! Ro = SUCCESS-CODE I
I LOCAL VARIABLES I
I Ri = COUNTER FOR BLOCK MOVE I
I Rll - SIMULATED DISK ADDRESS I

i'4TRT
LDL RR10, #ELK SIZE

1. MULT RR10, RO

* ADD R11, #DISK MEM BASE

145

,,m m m lm m | m r



LD RIO, #MAX PAGE SIZE
LDIR @Ri, GRI1, RIO
LD Ro, #VALID

END READ-PAGE

WRITE PAGE PROCEDURE

I PASSED PARAMETERS
I RO a BLKNO I
I RI = ?ROMBASEADDR
I RETURNED PARAMETR I
I RO - SUCCESS.CODE
I LOCAL VARIABLES
I RiO w COUNTER FOR BLOCK MOVE
i Ril = SIMULATED DISK ADDRESS

ENTRY
LDL R110, #BLKSIZE
MULT RR10, RO
ADD Rl, i;D . xM BASE
LD RiO, #MAX.PAGE-SIZE
LDIR OR11, ORl, R10
LD RO, #VALID

END WRITE.PAGI

READ.SEGMENT PROCEDURE

I PASSED PARAMETERS
I RO a PAGE.TABLE.LOC (BLK1#) I
I Rl z MEMORYADDR
1 RETURNED PARAMETER
I RO = SUCCESS.CODE
I LOCAL VARIABLES
I R2 = INDEX FOR PAGE-TABLE AIa AT
I RIO = COUNT FOR BLOCK MOVE

'I~ I RlI = DISK ELK # CONV TO MEM ADDR
I R13 m DISK'ADDIESS

ENTRY
LDL RR10, #DLKSIZE
MULT RR1O, RO
ADD Rll, #DISK MEM BASE
LD R2, #ZEPO
DO

S"LD RiO, #MAXPAGE SIZE
LD R13, Rul(R2)
MULT RR12, #BLK-SIZE
ADD R13, #DISKMEMBASE
LDIR @Rl, @R13, R10
INC R2, #1

146

F (



CP R2, #MAXPAGE SIZE
IF EQ THEN

EXIT
7I
LD R0, Rll(R2)
CP R0, #ZERO
IF EQ TEEN

EXIT
FI

OD
LD R0, #VALID

END READ-SEGMENT

WRITESEGMENT PROCEDURE

I PASSED PARAMETERS
I 10 n PAGE.TABLELOC (BLK_#)

RI n MEMORY ADDR
I RETURNED PARARETER
I Re a SUCCESS.CODE
I LOCAL VARIABLES
I R10 a PAGE.TABLE ARRAT INDEXI Rll DISK BLK NO CONV TO MEM ADDRI

I R13 n DISK ADDR

ENTRY
LDL RRl, #BLK_SIZE
MULT RR10, RO
ADD Rll, #DISKMEMBASE
LD R2, #ZERO
DO
LD RIO*, #MAXPAGESIZE

LD R13, Rll(R2)
MIJLT RR129 #BLKSIZE
ADD R13, #DISKMEM BASE
LDIR OR13, 0R1, RIO
INC R2, #1

,j CP R2, #MAX.PAGE-SIZE
tlj IF EQ THEN'

EX IT
Pi
LD R0, Rll(R2)

' CP RO, #ZERO
.I IF EQ THEN

EXIT
OI

LD R0, #VALID

END WRITESIGMENT

I1



READ DISK BIT MAP PROCEDURE

I RETURNED PARAMETERS
Re - SUCCESS-CODE

I LOCAL VARIABLES
I R10= DISK.BIT-MAPBUFF ADDR
I Ill = COUNTER FOR BLK :lOVE
I R13 - BIT MAP DISK ADDR

ENIRT
LD 1l0, #DISK BIT MAP
LD R13, #DISK-BIT-MA?LO.
CLR R12
MULT RR12, #BLK.SIZE
ADD R13, #DISK MEM BASE
LD RUv #(MAX.POSSDBLKS/16)
LDIR OR13, iR1, Rili
LID 00, #VALID

END RYAD.DISK.IT_MAP

WRTTE DISK BIT MAP PROCEDURE

I RETURNED PE AMETER
RO u SUCCESS.CODE

LOCAL VARIABLES
RIO u DISK BIT MAP BUFF ADDR
I ll a COUNTER IOR tIT MAP

I R13 - BIT MAP ADDRESS

ENTRY
LD R10, ODIS[_DITMAP
LD R13, #DISKBIT'MAP.LOC
CLR R12
MULT RR12, #BLK.SIZE
ADD R13, #DISK MEM BASE
LD Ru, # (MAOSS'DBLIS/6)

. LDIR R10, OR13, Ril
LD R0, #VALID

SEND WRITEDISK.BIT.MAP

SEARCH DISK BIT MAP PROCEDURE

I PASSED PARAMETER
I RO = STARTSRCHBLK #
I RETURNED PARAMETERS

.1 * SUCCESS-CODE
I R1 FREE BLK #
I LOCAL VARIABLES

* RIO - BIT COUNTER
1 Ill = 3IT MAP INDEX
S R12 = BIT PAP WORD

t 146



ENTRY
CLR R10
LD R11, RO
DIV RR10, #16
I 10= REM, RIl QUOT
DO

LD R12, DISK_BITMAP(R11)
DO BIT R12t RIO

IF Z THEN
SET R12, R10
mD DISK BITMAP(Rll), R12
LD Ri, RllMULT RRO, #16
ADD Ri, R10

LD R0, #VALID
RET

FI
INC Rl, #1
CP Rio, #16
IF EQ THEN

LD RIO, #ZERO
EXIT

FI
OD
INC Rilt #1
CP R11, #(MAX1rOSSD.BLKS/16)
IF EQ THEN

LD Ro, #SEC_$S)P PULL
RET

FI
OD
LD R0, #VALID

:4 END SEARCH DISK BIT MAP

j CLEARDISR BIT MAP PROCEDURE

1 PASSED PARAMETER
I RO = BLK NO TO CLEAR
I LOCAL VARIABLES
S R10i = BIT COUNTERjI Rll - BIT MAP INDEX
I R12 = BIT MA WORD

ENTRY
CLR RIO

LD R11, HO
DIV RE10, #16

SR10 = REM, RI = QUOT I



PASSCED ARA-METER

1 RO -TO ADDR
1 Rl - FROM ADDR

I R2 a SIZE IN BYTES

ENTRY
CLR R12
LD R139 R2
RR R139 #1
LD R12, RO
LDIRB OR12 OR19 R13

ND MEMORTMOVE

GET..UNIQ ID PROCEDURE

I RETURNED PARAMETERSI
I Re - SUCCESS..CODE
1 Rl a UNIQUE-IDI

INOTE: WILL BE STORED ON SEC STORI

LOCAL WORKSPACEBLI ARRAY [MAX_.PAGE.SIZE WORD)
UNIQJID WORD

ENTRY
LD R0, #SYSTEM-DATALOC
LD Ri, *WORT-SPACEBL[
CALL READPAGv
CP R0, #VALIDIIF NE THEN

RET
Y'
LD R10t #ZERO I UNIQ ID INDEX I
LD R139 WOR[ SPACE_.BLi(RIO)
LD UNIQ-JD, i3
INC R139 #1 _L(l~ 1LD WORK SPACE..L(1) 1
LD RO, #SYSTEMJDATA-LOC
LD Ri, #WORK-SPACE-BLK
CALL WIRITI-PAGE
LD R1, UNIQJID

END GET.UNIQ-ID



MAIN LINE PROCEDURE
ENTRT
CALL ALLOCLOCALMEMORT
CALL EBUG

END MAINLINE
END MMGR_2

V!

:15

I

It

I .I

.; !151

I



APPENDIX C - SWAP-IN PLZ/ASM CODE

MEMMGR MODULE

! ***• VERS. 1.0

CONSTANT
FALSE := 0
TRUE := 1
AVAILABLE := 1 AST ENTRT AVAILABLE I
ACTIVE :=1 1 AST ENTRY ACTIVE I
ZERO := 0
NULL " %0000
NULL.PAGE := 0
EBUG ,A900
MONITOR : %059A

I SUCCESS CODES
INVALID - 0
VALID :" 1
POUND : 2
NOT-FOUND 3
SWAPPED-IN :- 4
SWAPPED-OUT "= 5
SEG ACTIVATED 3- 6
SEG'DEACTIVATED = 7
SEG CREATED := 8
SEG DELETED :" 9
LEAFSEG.EXISTS :- 10
NO LEAF EXISTS := 11
G_ ST.FULL - 12
LASTFULL :- 13
IN-LOCAL MEMORY .= 14
NOTJIN-LbCALMEM := 15
LOCALMEMORTFULL:= 16
GLOBAL MEM FULL := 17
VIRTUALCORE FULL:= 18
DUPLICATEENTRT := 19
NO CHILD TO DEL := 20
SEC STOR.PULL : 21[ DISK ERROR := 22

, ALIASDOESOT.EXIST := 23

SI ATTRIBUTE MASKS I
READMASK := %(2)11111110
WRITE MASK := %(2)00000001

152



CHANGED MASI := %(2)01000000
IN-MEMORY_.MASK := %(2)00000100
CLEARED :- 0 1 CLEAR ATTR I

I AUTHORIZED ACCESS I
READ 0
WRITE :" 1
EXECUTE :X (2)00001000

I GAST FLAG BITS FIELD MASKS I
WRITABLE MASK := %(2)00000010
WRITTENMASK :% 2(2)00000100

I DESIGN PARAMETERS I
BLI SIZE :" 128
NOOFPROCESSORS :" 1
MAX DIR NO :" 4 1 EVEN NO. OF DBR_#'S I
GAST LIMIT " 16 1 MAX ENTRIES IN GAST I
LAST.LIMIT :- 16 1 MAX ENTRIES IN LAST I
MAX ENTRY NO := 21 1 SIZE OF ALIAS TABLE I
NOSEG DESC.REG e I NO. OF SEGMENT/PROCESS IFSTPOSi.FREEBLK:- 1

TYPE
ADDRESS WORD
ALIAS-HEADER RECORD [

SZG_PAGETABLE.LOC WORD
PARALIASTABLE LOC WORD J

SEG-DESCREG RECORD [
BASEADDR ADDRESS
LIMIT BYTE
ATTRIBUTE BYTE J

ALIAS RECORD (
UNIQUE ID WORD
CLASS WORD
SIZE WORD
PAGE- TABLE LOC WORD
ALIAS.TABLELOC WORD ]

I: MMU RECORD
SDR ARRAY NOSEG DESC REG

' ySEG.DESCREGJ
BLKSUSED WORD
MAXBLKS WORD]

GASTREC RECORD [
UNIQUE_!D1 WORDI GLOBAL ADDR ADDRESS

I ONLY ONE PROCESSOR I

1 153

1i



PROCESSORS L ASTE NO WORD
I WRITTEN BIT AND WRITAILE BIT !

FLAG-BITS WORD
GASTENOPAR WORD
NOACTIV. INMEMORY WORD
NOACTIVE.DEPENDENTS WORD
PAGETABLE LO1 WORD
SIZEl WORD
ALIASTABLE.LOCI WORD
SEQUENCER WORD
INSTANCE1 WORD
INSTANCE2 WORD ]

LASTREC RECORD [
MEMORTADDR ADDRESS
SEGMENTNO.ACCESS AUTH ARRAY

[MA.DBR..NO _BYTEj
HANDLE RECORD ,

UNIQUEID2 WORD
E.INDEX WORD ]

GLOBAL

I$SECTION G.DATA I

G-AST ARRAY [GAST.LIMIT G.ASTREC]
G-AST LOCK BYTE
DISKBITMAPLOCK BYTE

! $SECTION LDATA I

MMU IMAGE ARRAY [MAX DBR NO MMU]
LA8T ARRAY [L AST LIMIT L AST REC]
ALIAS-TABLE RECORD ('HEADER ALIASHEADER

ALIAS ENTRY ARRAY
[MAX ENTRY NO ALIAS] J

DISK BIT MAP BUFF ARRAY r6- 3YTE]
PAGE-TABLE BUFFER ARRAY BLYSIZE BYTE]

EXTERNAL

ALLOCLOCALMEMORY PROCEDURE
ENTRY

END ALLOCLOCALMEMORT

READ SEGMENT PROCEDURE
ENTRY

END READ-SEGMENT

154



FREELOCALBIT MAP PROCEDURE
ENTRY

END FREELOCA BIT MAP

ALLOC_ GLOBAL MEMORY PROCEDURE
ENTRY

END ALLOCGLOBALMEMORT

MOVE TO.GLOBAL PROCEDURE
ENTRY

END MOVE-TO-GLOBAL

SIGNALOTHERMEMORY.MANAGERS PROCEDURE
ENTRY

END S IGNALOTHERMEMORYMANAGERS

INTERNAL

UPDATE MMU IMAGE PROCEDURE

PASSED PARAMETERS
1 RO - DBR.#
I RI = SEGMRNT_*
SR2 = ADDR
I R3 - ACCESS
I R4 - LIMIT

LOCAL VARIABLES
Ri a WORKING REGISTER

I R13 WORKING REGISTER

ENTRY
LD RI, OMMMU IMAGE

l LD R13, #SIZEOF MMU
MULT ER12, 10
ADD RI, R13

j LD R13, #SIZEOF SEGDESCREG
MULT RR12, Rir ADD E10, R13
LD OR10, R2
INC R10, #2
LDB @R10, RL4
INC Ri, #1

SLDB RL4, @RI
v CPB RL3, #EXECUTE

IF EQ THEN
ANDB RL4, #%(2)iii10111

ELSE
ANDa RL4, #%(2)1iii10

155F r++
I'.'



ORB RL4, RL3
LDB OR10, RL4
RET

END UPDATEMMUIMAGE

UPDATEL-ASTACCESS PROCEDURE

I PASSED PARAMETERS
I RO - INDEX
I RI m ACCESS_.AUTE
I R2 - DBR_#
I LOCAL VARIABLES
I R5 a WORKING REGISTER
I R7 = WORZING REGISTER

ENTRY
LD R5, #L-AST
LD R?, #SIZEOF LASTREC
MULT RR6, RO
ADD R7, #2
ADD R7, R2
ADD R5, R?
LDB 1L3, OR5
CPB RLI, #WRITEIF EQ THEN

ORB RL3, #(2)10000000
LDB OR5, RL3

ELSE
ANDB RL3, #%(2)01111111LDB OR59 RL3

Pi
RIT

'. tEND UPDATI_LAST_ACCESS

" CHECK LOCAL MEMORY PROCEDURE

I': PASSE PARAMETERSI
' ' RO - INDEX

I ! RETURNED PARAMETER
I RO = TEST
I LOCAL VARIABLES
I R2 aI
I R3 = SEGNO
1 RH3 - ATTRIBUTES

I R10 z ADDR OF MMU IMAGE.SDR[SEG#] I;R11 = ADDR OF, L A5T[R0] .SEG/ACC[I]l
I R12,13 =W ORKING REG ISTERSI

3:: ENTRY

1 156

tol



LD R2, #ZERO
DO

CP R2, #MAX DBRNO
IF EQ THEN

LD RO, #NOT_INLOCAL MEM
RET

Fi
LD R11, #LAST
LD R13, #SIZEOF LASTREC
MULT RE12, RO
ADD Rli, R13
ADD RI, #2 1 SEGMENT NO OFTSET I
ADD Rl, R2
LDB RL3, ORI
CLRB RH3
ANDB RL3, %(2)01111111
CPB RL3, #ZERO
IF NE THEN

LD R1o #MMU IMAGE
LD R13, #SIZEOF MMU
MULT RR12, R2
ADD R10, R13
ADD R10, R3
ADD R10, #3 1 ATTRIBUTES OFFSET I
LDB RE1, @R10
ANDB RHI, #IN MEMORT_MASK
CPS Rh1, #ZERO
IF NE TEEN

LD RO, #IN LOCALMEMORT
RET

FI
FI
INC R2, #1

OD

END CHECK LOCAL_-MEMORY

CHECK MAX VIRTUAL CORE PROCEDURE

I PASSED PARAMETERS I
I RO = DRI
I R = BLKS I
I RETURNED PARAMETER
I RO = SUCCESS CODE
1 LOCAL VARIABLES I
I R10,R12 = WORKING REGISTERS 1

ENTRY
LD R10, #MMU.IMAGE
LD R13, #SIZEOF MMU

15'?



MULT RR12, RO
ADD R10, R13
LD R13, #SIZEOF SEG-DESC-REG
MULT RR12, #NOSEGDESCREG
ADD R10, R13
LD R12, OR10
ADD RI2, RI
INC R10, #2
CP RI., OR10
IF GT TEEN

SUB R12, RI
LD R09, #VIRTUALCOREFULL

ELSE
LD RO, #VALID

Fi
DEC R10, #2
LD @R10, R12
RET

END CEECKMAXVIRTUALCORE

SWAP IN PROCEDURE

1 PASSED PARAMETRS
1 RO = INDEX
I R - DR #
I R2 a ACCESS
I RETURNED PARAMETER
I RO = SUCCESS CODE

LOCAL INDEX WORD
DBR NO WORD
ACCESS WORD
G.ASTBASE ADDRESS

ENTRTi LD INDEX, RO
LD DBR-NO, R
LD ACCESS, R2
LD R5, #G-AST
LD R13, #SIZEOF GASTREC
MULT RRI2, RO

-I ADD R5, R13
LD G.ASTBASE, R5
ADD R5, #16 1 SIZE OFFSET I

i CLR R6
LD R?, @R5
DIV RR6, #BLK_SIZE
LD R6, R7

[ . DEC R5, #12 1 LAST INDEX OFFSET I
LD R7, @R5
LD Ro, R1
LD RI, R6

t 158



CALL CHECK MAX VIRTUALJCORE
Cp Ro, #VIRTUAL CORE FULL
IF EQ THEN

RET
Fi
INC R5, #4 1 NOkCTIVEINMEMORT CFFSET I
INC OR5, #1
LD R, OR5
CP ACCESS, #WRITE
IF EQ THEN

DEC R5, #4 1 OFFSET TO FLAGBITS I
LD R4, @R5
OR R4, #WRITABLEMASK
LD ('R5, R4

FI
LD RO, R7
CALL CEECK LOCAL_MEMORT
AND R4, #WRITABLEMASK
CP R49 #0
IF NE THEN

CP Ra, #1
IF GT THEN

CP R0, #INLOCALMEMORT
IF NE THEN

LD R0, R6
CALL ALLOC LOCAL MEMORY
CP R0, #LObAL.MEMORT.FULL

IF EQ THEN

RET
LD R9, R1
INC RS, #8 I PAGE TABLE LOC OFFSET I
LD Rog, @R5
CALL READ SEGMENT
CP R, #VILID
IF NE THEN

LD RO, R9
LD R1, RS
CALL FREELOCALBITMAP
,ET

FI
LD R1, #LAST
LD Ri3, #SIZEOF LASTREC
MULT RR12, R?
ADD Ri0, R13 IMEMORTADDR OFZET INTO LAST!
LD OR10, R9

ELSE
LD R10, #LAST
LD RI3, #SIZEOF LASTREC
MULT RR12, R?

t ADD RIO, R13
1



LD R9, OR10
Pi

ELSE
LD R8, RO
LD R5, GAST.BASE
INC R5, #2 1 GLOBALADDR OFFSET I
LD RI2, OR5
CP R12, #NULL
IF EQ THEN

LD R0, R6
CALL ALLOCGLOBAL MEMORT
CP RO, #GLOBALMEM _ULL
IF EQ THEN

RET
71

LD R9, Ri
CP R, #INLOCAL.MEMORT
IF EQ THEN

LD R0, R?
INC R5, #14 1 SIZE OFFSET I
LD R2t AR5
CALL MOVE TO GLOBAL
C? RO, #ViLI5

IF RE THEN
RET

F'I
ELSE

LD RO, R.
LD Ri, INDEX
CALL SIGNALOTHERMEMORY.MANAGERS
CP R0, #VALID
IF NE THEN

ELSELD) R5 ,G AST B3ASE

ADD R5, #2 1 GLOBAL ADDR OFFSET I
f' LD R9, OR5

~F

LD R0, DBRNO
LD R10, #LAST
LD R13, #SIZEOF LASTREC
MULT RR12, R?
ADD R10, R13
ADD RiB, RO
INC RI, #2
LDB PLI, OR1
LD R2, R9

160

I
- .w • wm • m m •• m m• m• m wmmwm mmmmm m N m mm



LD R3, ACCESS
LD R4o R6
CALL UPDATEMMU.IMAGE
LD Ho, R7
LD Rl, ACCESS
LD R2, DBRNO
CALL UPDATEL.ASTACCESS
LD Rh, #SWAPPED.IN

END SWAP-IN

MAIN.LINE PROCEDURE
ENTRY
CALL SWAPIN
CALL HBUG

END MAIN-LINE
END MEMMGR

. 161



LIST OF REFERENCES

1. O'Connel, '. S., and Richardson, L. D., Distributed
Secure Design for a Multi-microprocessor Operating
System, MS Thesis, Naval Postgraduate School, June
1979.

2. Parks, E. J., The Design of a Secure File Storage
System, MS Thesis, Naval Postgraduate School,
December, 1980.

3. Coleman, A. P., Security Kernel Design for a
Microprocessor-Based, Multilevel, Archival Storare
System, MS Thesis, Naval Postgraduate School,
December 1979.

4. Peitz, S. L., The Implementation of the Securi~y Kernel
for a Multi-microprocessor Operating System, MS
Thesis, Naval Postgraduate School, June 19Fe.

5. Schell, Lt.Col. R. R., Securitv Kernels: A Methodical
Design of System Security, USE Tecbnical Papers
(Spring Conference, 1979). pp 245-2-0, March 1979.

6. Or~anick, R. J., The Multics System: An Examination of
Its Structure, MIT Press, 1972.

7. Millen, J. Y., "Security Kernel Validation in Practice,"
Communications of the ACM, v. 19 no. 4 p. 243-250,
Ma% 1976.

F. Madnick, S. E., and Donovan, .. , Operating Systems,
VcGraw Fill, 1974.

9. Denning, D.E., "A Lattice Model of Secure Information
Flow, Communications of the ACM, v. 19
D. 236-242, May 1976.

1e. peed, P. D., and Kanoidia, R. K.A "Synchronization With
Eventcounts and Sequencers. Communications of the
ACM, v. 22 no. 2 p. 115-124, February 1979.

. - 2

, "' I I



F

11. Reed, P. D., Processor Mliltiplexing In a Layered
Operating System, MS Thesis, Massachusetts
Institute of Technology, MIT LCS/TR-167, 1979.

12. Zilog, Inc., Ze10 MMU Memory Management Unit,
Preliminary Product Specification, October 1979.

13. Riggins, C., "When No Single Language Can Do the Job,
make It a Language-Yamily Matter," Electronics
Design, February 15, 1979.

t14. Schell, Lt.Col. R. R., "Computer Security: the Achilles
Heel of the Electronic Air Force?, Air 'niversity
Review, v. 3e no. 2 p. 16-33, January 1979.

15. Saltzer, .:. I., Traffic Control in a MultiDlexed
Computer System, Ph.D.Thesis, Massachusetts
Institute of Technology, 1960.

'i16

, 163

I;

I "-



INITIfT, TISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 2
Department of Com.puter Science
Naval Postgraduate SchoolMonterey, California 93940

4. Lyle A. Cox, I'r., Code 57Ct 4
Department of Computer --...ce
Naval Postgraduate Sch .nl
Monterey, California 9,.jfte

5. LTCO oger R. Schell, Code ? i 5
Department of Computer Science
Naval Postgraduate School
.1onterey, California 93940

6. Joel Trimble, Code 221 1
Office of Nval Research
890 North Quincy
Arlington, Virginia 2221?

-'( 7. LT Alan V. Gary 2
. 3320 , ?pler Ave.
Indianapolis, Indiaua 46217

8. LCDR Edmund E. Moore
NAV!LEXSYSCOM
PME 107
Washington, D.C. 2e360

9. CAPT John L. Ross I
107 HBadon St.
Weathe:_"-4,t Texas 76086

10. LT Hal P. Powell
• 1295 Featherstone Way

Sunnyvale, Clifornia 94e87

164

Jr" i,



4

11. Office of Research Administriation
Code 012A
Naval Postgraduate School
Monterey, California 9394.

12. Uno R. Xodres, Code 52Kr
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

13. I. 'Larry Avrunin, CodelE
DTNSRDC
Bethesda, Maryland 20084

14. F. P. Crabb, Code 9134
Naval Oceans Systems Center
San Diego, California 92152

15. Kathryn Feninger, Code 7503
Naval Research Lab
Vas-hington, D.C. 20375

116. Dr. J. McGraw
UI.C. - L.L.L. (1-794)
P.O. Tox 808
Liverma Ie, California 94550

17 Mark Undterwood
NPRDC
San Diego, California 92152

1e. Waltet P. Warner, Code 1'70
N S WC
Dah1gren, Virginia 2244e

19. M. George Michael
U.C. - L.I.L. (-76)
P.O. Box U08
Livermore, California 94550

165


